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1. INTRODUCTION

Limits of ARMA models of long-run dynamics

The emphasis in this thesis is on the long-run dynamics of univariate data
generating  processes.  Stationary  univariate  stochastic = processes are
traditionally described by autoregressive moving-average (ARMA) models (see
e.g. Box and Jenkins 1976; Priestley 1981; Judge et al 1982; Harvey 1981).
However, these models are only applicable for describing long-run behavior if
the ARMA parameter values are near the boundary of the parameter space. In
this case the asymptotic distributions of estimated parameters and test
statistics turn out to be inadequate as approximations to the finite sample
distributions  thereof. Hypothesis testing based on these asymptotic
distibutions is invalid then. This is for example the case if the
autoregressive polynomial function contains a so-called unit-root. Models of

this type are called integer integrated ARMA models (ARIMA).

Furthermore, as is indicated by Sowell (1992a), an ARMA model that is
designed to describe the long-run behavior is necessarily less appropriate to
describe the shorter-run behavior of a process. This can be observed in the
frequency domain from the spectrum which not only has power at the low
frequencies associated with the long-run behavior but also at somewhat higher
frequencies. Consequently, restrictions are placed on the possibilities to
describe the short-run behavior of the process with a model designed for
description of long-run behavior. Ideally, no restrictions are placed at

other frequencies than the specific long-tun frequencies.

A third drawback of using ARMA models for describing long-tun dynamics is the
impossibility to direct the fit of the parameters to the long-run
characteristics of a series. As pointed out by Cochrane (1988), maximum
likelihood (asymptotically) chooses parameter values to minimize the
difference of the periodogram of the realization and the spectral density of
the parametric model weighted at different frequencies. Consequently, the
maximum likelihood parameter estimates may have been sacrificed to obtain a
better description of the short-run dynamics although our interest centers on

long-run dynamics.

Fractional models
When investigating the long-run behavior of a time series, a model should be

considered that allows the long-run behavior to be captured. Clearly, the
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ARMA models are not typically suited for modeling long-run dynamics. We
therefore introduce univariate fractionally integrated ARMA models (ARFIMA),
which turn out to have some desirable properties for this purpose (Granger
and Joyeux 1980; Hosking 1981). ARFIMA models are a generalization of ARIMA
models in that the integration parameter is not restricted to take integer
values only. It turns out that processes that are integrated of an order less
than a half are stationary nonetheless: we can define an autocorrelation
function and a pseudo spectral density in this case. The autocorrelation
function decays hyperbolically to zero and thus more slowly than
autocorrelation functions of stationary ARMA processes which converge to zero
exponentially. In the frequency domain we observe a generalization of the
spectral density behavior near zero frequency as compared to behavior typical
for ARFIMA processes. The integration parameter dictates how long shocks are
felt in the system, i.e. the persistence of shocks. Furthermore, the long-run
dependence given a fractional order of integration is achieved with less
restrictions on the higher frequency behavior of the series than with integer
order of integration. A third comparative advantage of ARFIMA models is the
possibility to direct the parameter estimates for purposes one wants the
model to be used for. Hosking (1981) shows that in the ARFIMA model the
short-run dynamics of a process are captured by the autoregressive and
moving-average parameters, whereas the fractional integration parameter

captures its long-run behavior.

As a measure of long-run dependence we apply the cumulative impulse response
measure. Given a Wold decomposition (e.g. Box and Jenkins 1976) the value of
this measure is equal to the moving-average polynomial function evaluated at
frequency zero, i.e. at exp{0}=1. Cochrane (1988) states that measures based
on this quantity are the only measures of the presence of a zero frequency

unit root in a finite sample.

ARFIMA models appear useful for other purposes than long-run dynamics
description as well. Traditionally, (augmented) Dickey-Fuller tests are
applied to a realization in order to test the null hypothesis of an
autoregressive unit-root against a whole class of stationary alternatives:
rejection of the null hypothesis then implies stationarity. Fitting an ARFIMA
model without any autoregressive and moving-average parameters to the sample
allows one to determine the fractional order of integration, i.e. any real
value between zero and one is allowed (Hassler 1993). Given the Dickey-Fuller
test of a point-hypothesis against a whole class of points, this amounts to a

more symmetrical treatment of the null and alternative hypothesis.
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Furthermore, it should be noted that rejection of the Dickey-Fuller null
hypothesis does not rule out non-stationary behavior. Only a parameter value
between zero and a half implies stationarity. If the Geweke and Porter-Hudak
(1983) two-stage semi-parametric estimation procedure is applied an
additional advantage of this alternative unit root testing strategy is that

no model structure has to be specified preceding the estimation stage.

As an example of an application of the generalization described above we note
that deterministic long-run behavior of processes is modeled as a polynomial
of time. Linear trends are commonly observed in econometric and economic
literature.  Discrimination  between  stochastic ~and deterministic  trend
behavior amounts to specifying a model that nests both types of long-run
dynamics and subsequently testing the order of integration. Allowing for
fractional integration parameter values enriches the class of admissible
possibilities such that mixtures of both types are allowed as well. Compare

for instance Nelson and Plosser (1982) to Sowell (1992a).

Outline of the study

In Section 2 we describe the theory underlying ARMA, ARIMA and ARFIMA
modeling of univariate stochastic processes. We highlight the wunit root
testing strategies and the prediction theory associated with the three model
types. The consequences of deterministic trend behavior for modeling the

processes are treated as well.

In Section 3 we present the estimation methods. In this thesis the
nonfractional ARMA parameters are estimated using three estimation methods,
i.e. Yule-Walker, ordinary least-squares and maximum likelihood. The
fractional parameter in the ARFIMA model is estimated using two methods. The
first method is the two-stage estimation procedure as proposed by Geweke and
Porter-Hudak (1983) the integration parameter is estimated first by using a
frequency domain property of ARFIMA processes; the ARMA parameters of the
transformed process are modeled afterwards. The other method is maximum
likelihood estimation as proposed by Sowell (1992b), such that the

integration parameter and ARMA parameters are estimated simultaneously.

In Section 4 we illustrate the theory with economic and non-economic data
sequences. The economic series is quarterly real US gross national product
(seasonally adjusted, 172 data points); the non-economic series is annual

Trier oak tree ring widths (1143 data points). Section 5 concludes.



2. TIME SERIES MODELS

In Section 2.1 we discuss the traditional so-called ARMA models. The concept
of asymptotic stationarity plays a crucial role here. In Section 2.2 we
present the natural extension to integrated ARMA models, where the so-called
order of integration 1is traditionally restricted to integer values. In
Section 2.3 we come to the main body of this thesis, fractionally integrated
ARMA processes which allow the integration order to take any real value.
These kinds of models are particularly useful to model long-term dynamics.
Simulation experiments are presented in Section 2.4 in order to get a grasp

of the empirical implications of the presented fractional integration theory.

2.1 ARMA MODELS

Suppose that a wunivariate stochastic process y with zero mean has the

following AutoRegressive Moving Average model, i.e. y~ARMA(p+d,q):

(1) ofL) y, = O(L) ¢

where

o(l) = 1—(x1L—a2L2—...-oep+de+d
and

O(L) = 1-0,L-0,L"~... -9,

where y; is a realization of the process y (¢=1,2,...,T), L is a lag-operator
such that Ly=y,,; and &; is the t-th observation of a covariance stationary

stochastic error process.

A process € will be called covariance stationary if its first twe moments

exist, are finite, and are independent of time; covariances only depend on

the time span between two observations of the process:

E(ee) = e lﬂel <o
E(e—pe) =02 g2<00
g(st—ﬂe)(st—k_”e) =Y€(k) lYe(k)l <00, k=1727°“

A stationary process € is said to be ergodic if the sample mean of every
function of finite observations tends to its expected value in mean square,
at least when the expected value of the square of the function -exists

(Griliches and Intriligator 1983, p. 243, {footnote 7). The following



quantities are consistent estimators of the mean pu,, variance az and
covariances 7v.(k) respectively (Harvey 1981, except for the correction

factors for the variance and covariances):
ﬁe = T Zo::let
g (T-1)71 Y7 (er-Re)?
Felk) = (T=k=1)"0 T (€= fe)(Eok—Fe)

In this case, a single very long realization of the stationary process allows

us to infer everything about the probability law generating that process,
i.e. the finite sample moments converge to the infinite sample moments, which
are equal to the population moments with probability one (Nerlove, Grether
and Carvalho 1979). If we say that € is stationary, we hereafter assume that
it is ergodic as well and that it has finite moments. Furhermore, Unless
stated otherwise in this thesis, &, will be assumed to be a normally
distributed series of independent random shocks with zero mean and variance

0’2, ie. st~NID(0,az). We speak of ”white noise”.

Given this covariance stationary process €, what can we say about the
stochastic properties of the process y? To study these properties we have to
investigate the properties of the lag-polynomials (L) and 6(L). Because the
algebra of these polynomial operators is isomorphic to the algebra of the
polynomial functions o(z) and 6(z) (see Franses 1991 and the references
therein), we can study the properties of the polynomial operator (L) by
looking at the polynomial functions of(z) and 6(z), z being a complex
variable. The behavior of the discrete time series y, is different as the
roots of the equations |c(z)| =0 and |#(z)| =0 — the zeros of the determinants
of the polynomials c(z) and 6(z) — fall in different regions of the complex

plane.

The polynomial function ofz)
Let us first concentrate on the polynomial function o(z). Denoting the

smallest zero by &, we can classify ARMA processes as follows.

- If |£|>1, the process y is called asymptotically stationary, i.e. the time

series y, converges to a covariance stationary time series if ¢ tends to

1

In this thesis we abstain from processes with an autoregressive polynomial
function that has at least one zero inside the complex unit circle, i.e.
|él<1. These processes are called explosive.



infinity.

However, it is not guaranteed that y is covariance stationary if ¢ is
outside the complex unit circle. In the AR(1) case® for example, the latter
condition boils down to the condition |cy|<1. Following Dickey, Bell and
Miller (1986), we demonstrate in Appendix A that mean and variance depend
on the properties of the initial observation. Therefore, to ensure
covariance stationarity, the following additional conditions are necessary:
the starting point of the series is independently distributed from the
disturbances ¢, the initial shock &, is zero, the initial observation y,
has zero mean, and Yy, has zero variance or the same variance as the
realizations {y,}%., of the process y. The five conditions together are
sufficient to ensure covariance stationarity. In appendix A it is noted

that similar arguments hold for higher order models.

- If ¢ is a zero of o with |£]| =1, then £ is called a unit root. A distinction
is usually made between the real root -1, the real root +1 and the complex
roots exp(—i\) with Ae(0,2m)\{r}. The existence of unit roots in the
autoregressive structure equal to +1 has led to a distinct class of models,

so—called ARIMA models (see Sections 2.2 and 2.3).

In general, we can classify a stochastic process y by putting it in moving -

. 3
average form, i.e.

Ve = ZO:=0 hie s

The stochastic process vy is called asymptotically stationary if the variance

of the process vy is finite and (asymptotically) non—stationary in case of

infinite variance. (Gourieroux and Monfort 1990).4

The variance of the process y is finite if the coefficients h; are squared

. 2
summable, i.e. ¥¥_ohr < +00.

For the AR(1) model the moving-average approximation is

2
ARMA(p,0) and ARMA(0,q) processes are usually called AR(p) and MA(q)
processes respectively.

3
Putting the model of y as given in (1) in moving-average form is equivalent
to finding a particular solution to this stochastic difference equation.

4 R © ;2 s ] _
The condition ) k—oh{<00 implies limp,oohg=0.



©
Ve = ) hp€eg
k=0
where hk=0¢’1c if ]ocll <1 and so the process y is asymptotically stationary if
Yr—o 0412k< +00. From equation (A3) in Appendix A it is seen that in this case
any new observation at t causes the variance of the process y to increase

with only ocf( -t )02.

If oy =1 the AR(1) process has a unit root +1; we call such a process a random
walk. From (A3) it can be seen that in this case any new observation adds

variance 02 to the process. Notice that a random walk process can not be put

in a finite moving-average form.

The polynomial function 6(z)
We now turn to the polynomial function 6(z). If the smallest zero of the
moving-average polynomial lies outside the complex unit circle, the process y

is called invertible. In this thesis we only deal with invertible ARMA

processes.

2.1.1 The autocovariance function

The autocovariance generating function of a stationary process y (a.c.g.f.),

say gy(z), is defined as (Harvey 1989)

k
(2) gy(z) = 2012):-00 Yy(k)z )
where 7,(0) =03 and the autocovariance v,(k) corresponding to Z* is as defined
before. In case the observations y, are real, as is the case with most
economic time-series, there holds v,(-k)=7,(k). For the stationary ARIMA

process, a so-called ARMA process, the a.c.g.f. is

2 6(2)0(1/z)
92) = e 5Na(1/2)

The k-th order autocorrelation function is defined as py(k)=7,(k)/v,(0). For
ARMA processes the autocorrelation function can be approximated by

py(k) ~ a*

where 0<a<1 and k-co. The autocorrelation function shows an exponential decay.



2.1.2 The power spectrum

In the frequency domain a powerful tool is the power spectrum of a stationary

process, usually called the spectrum. The spectrum is defined as the Fourier

transform of the autocovariances:

(3)  fA) = @07 Y Yylk)-exp{-irk}, _ <

provided the right-hand side converges, which can be written as

AN = @07 { 5y(0) + 2 X7 mylk).cos(Ak) }
if y is a process that generates real observations. In this case the spectrum

is symmetric around zero frequency. Note that A is a continuous variable.

The autocovariance function and the spectrum contain the same information
about the process; the difference is in the representation of this

information. This can be seen by the inversion of (3) which gives

(k) = j"w £y(A). exp{—iAk} dX

from which we observe that 05:7},(0) can be decomposed into the spectrum
values at the frequencies Ae[-m,w]. We can therefore interpret the power
spectrum as a measure of the contribution of a cycle with a particular

angular frequency to the variance of the process.5

Moreover, the spectrum f(A) is proportional to the a.c.g.f. g,(.) evaluated
along the complex unit circle in the following way (Harvey 1989):

f,(A) = (2m) g, (exp{~iA}), —msn

where 2m is a normalization constant. This expression for the spectrum seems

to be more convenient for the evaluation of spectra than (1). Harvey calls

the right-hand side the ’spectral generating function’ (s.g.f.).

Hence, for ARMA(p,q) processes the s.g.f. is given by

ol |8(exp{ir})|’
(4) X)) = 57 ¢(ex§{¢/\})

For example, the spectrum of an AR(1) process is

5
If we divide (3) by the variance 0‘% of the process we speak of spectral
density because then there holds

T
J. f(A) ax =1
-



2
U S
HA) = 2 T 3gcos N T 6°
whereas the spectrum of a white noise process is constant:

2
05
) = 35

The latter spectrum indicates that the contribution of each cycle with a
particular frequency to the variance of the process is just as much as that
of any other. In the time domain this is equivalent with zero autocovariances

at positive lags.

In the figures 2.1, 2.2, 2.3 and 2.4 we illustrate the relationship between
the s.g.f. and the a.c.g.f.. In each figure we observe five panels: three
panels with T=300 realizations of a particular process for three different
parameter values, a panel with the a.c.g.f. and a panel with the s.g.f., both
for the three different parameter values. The dotted line in the latter panel
is the spectrum of a white noise process. The variance of the error process

is assumed to be one.

From figui‘e 2.1 we observe realizations of an AR(1) process for the parameter
values o =0.1,0.5,0.9. To obtain a realization of the AR(1) process we used
zero as a starting-up value. It can be seen that the higher the parameter
value, the more the observations depend on observations in the past. This
longer memory property for d higher parameter value is also observed from the
a.c.g.f. and the s.g.f., where the spectral density near zero tends to

infinity for parameter values close to one.

From figure 2.2 we observe realizations of an AR(1) process for neagtive
parameter values. Apart from the negative correlation between adjacent
observations as can be seen from the a.c.g.f., we observe that short-run
cycles contribute more to the variance of the process the more negative the

parameter value.

Figure 2.3 reveals the consequence of the a.c.g.f. of an MA(l) process for
the s.g.f.: the positive association between adjacant observations is
equivalent to the predominance of long-run cycles in the series. The
realizations of the MA(1) process are obtained by an indirect Cholesky

decomposition of the variance-autocovariance procedure (see Section 2.4.1).

Figure 2.4 deals with negative MA(1) coefficients. The predominance of the
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Figure 2.2
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MA(1) (T=300, theta=-0.1)

Figure 2.4
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shorter-run cycles is equivalent to the negative association between adjacent

observations.

Sample equivalent of spectral density function

In practice we only observe realizations of a process and therefore need an
estimator for the power spectrum. The sample equivalent of the power spectrum
is the sample spectrum, say I,(A), where the autocovariances are replaced by
their sample estimates ¥,(k), with a denominator equal to 7T instead of
(T-k-1). The summation is restricted to T-1 in this case and the sample
spectrum appears to be proportional to the squared absolute value of the

Fourier transform of the realizations {yi,...,yr}:

(5) I(A) = (2m) ™ ZZ;:TH 7y(k). exp{ —idk}, — WAL

- . 2
= (2nT) ! Z:=1 yiexp( —iAk)

The power spectrum can be seen as the average value of the sample spectrum in

repeated realizations, i.e. there holds

lzmT-xx:S(Iy()‘)) = fy(’\)
However, the sample spectrum is not a consistent estimator of the power

spectrum: the variance does not decrease as the sample size increases.

Usually the frequency A in (5) is restricted to be discrete, in particular
Aj=2mj/T is the jth harmonic of the fundamental frequency 2m/T. Although the
periodogram of a process is proportional and not identical to the sample
spectrum where A is discrete instead of continuous, usually one speaks of (5)

as the periodogmm.6 We follow this convention.

It is interesting to note that for the discrete A case Box and Jenkins (1976)

showed that equation (5) is equal to

T 2 2 )
Iy()\j) =3 (aj + bj)a 1=L2,...,¢q

If T is even [ (/\q)=Ta3. The interesting point is that the coefficients
(aj,b;) seem to arise from an equation where y, is described as a linear
combination of cosine and sine terms (Box and Jenkins 1976), the so-called

real Fourier transform:

6) v, = ag + Z‘]{=1{ajcos(,\jt) + bjsm(,\jt)} + g

6
The periodogram is defined as 41rIy()\).
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where A;j=2mj/T and ¢= [T/2].7 As such the periodogram evaluated at the
frequency A; indicates the contibution of the corresponding cycle to the
variance of the process, as measured by the squared amplitude. Finally, it

can be derived that

Y, n-y) = Yo Ty

2.1.3 Prediction Theory

The General Prediction Problem

Suppose y and x are two random variables with joint probability density
f(v,x). If we want to predict y from some function of x, say u(x), Priestley
(1981, Theorem 2.12.2) shows that u(x)=E(y|x) is the optimal predictor in a

mean square sense, i.e. in this case the objective function

sww) = [ [ ly-unlfov.x) dy de

is minimized over all functions u of x.

Suppose for the moment that at time (¢—1) we have p observations
(V¢-1,Ve-20+-+>Ve-p) and want to predict y;. Following Priestley’s (1981)
argument the minimum mean square error predictor of y; given this

information, denoted by y;_;,, is

Vi1 = E(Ve | V15 Vt-25++ 2 Ve-p)-

The first index implies that he realizations before and inclusive the period

(t—1) are known, the second index reflects the prediction horizon.

In practice the density function f_is hardly ever known in advance and

therefore we cannot say anything about this conditional mean. We therefore
have to make an assumption. We assume ¥,y g,-..,Y¢p t0 be jointly normally

distributed for which the following linear relationship holds

(7) V¢ = G pYe1 + -0+ G pVip

where the subscript p in a;, denotes that the coefficient corresponds to an

autoregressive polynomial of finite order and is introduced for future

7If T is odd, the least squares estimates of the coefficients ap and (a;b;)
where i=1,...,q are: ag=Y, a;=2T" 1 Ejtw_:lytcos( A jt) and b;=2T" 1 Zg;lytsin(/\ jt).
If T is even, the least squares estimates of the coefficients ag and (a;by)
where i=1,...,q-1 are as mentioned above, whereas (aq,bq)=(T'IE:€=1(—l)tyt,(l).
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purposes. The optimal prediction in a mean squared error semse is obtained by

3 3 . . 2 8
minimizing E[(ys_1,1-¥e)" |-

Differentiating the latter expectation with respect to agp,, k=1,...,p, gives

the following set of equations for which the expectation is minimized:

(8) Yy(k) = al,p'Yy(k_l) + ot ap,p'Yy(k_p)

where k=1,2,...,p (see e.g. Box and Jenkins 1976).9 These equations are

usually called the Yule-Walker equations and can be obtained directly by

multiplying (7) throughout by y,, and taking expectations. In matrix
notation the set of linear equations for a;p,a;p,...,0p, in terms of the

autocovariances v,(0),7y(1),...,7,(p) reads:

7y(1) Yy(0) oo 7y(=p+1))[a1,p
O =] ]

Yy(P) Yy(p=1) ... 71y (0) Jlap,p
In practice the population values of the autocovariances are usually unknown.
Estimates of the finite order autoregressive parameters are then obtained by
substitution of estimates of the theoretical autocovariances (see also
chapter 3 on estimation of time series models). A formula to obtain the
standard errors for @ p,ds p--.,dpp is described in Box and Jenkins (1976,

eq. 7.3.8).

In general we make predictions of y,p, ie. at time n we make a prediction
of yn., Which lies h periods ahead. The finite order coefficients of this

"shifted” autoregressive model are then obtained from (9), where

(Yy(L)s->7y(p))’ is then replaced by (7y(h)y-..,Yy(P+h))".

Predictions made from a specified model

If we assume that the the realization results from a_certain type of model we

must procede in a different way to obtain predictions. Contrary to the
previous discussion we mnow highlight the prediction problem when the
predictions are made from a certain type of model. If we assume that y is an

MA(q) process then there holds

8
The predictor Y-1,1 is optimal in the <class of linear predictors. If the
normality assumption holds as well, it is an optimal non-linear predictor as

well.

9
The equations can  also be  expressed in terms of  the autocorrelations

Py(l)ypy(2))' %) py(P)~
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-k
Yo = Jpo OxrhE -t h<q,

= 0, h>gq.

with corresponding prediction variance
-h 2
V(yen) = Yo, Oken0e
Note that e,=y;—y;1; can be interpreted as a one-step ahead prediction

error, also called innovation error. Making use of this fact and given h<q we

can write

-h
Ve, = gﬂ Orsn(Vik—Ve-k-1,1)

which is a useful expression for updating purposes.

Granger and Newbold (1986) show that if y is an AR(p) process the optimal

predictor y, , is as follows:

P
Yo = Zk=1 Ve, h-k
where y; = yyx for k<0. In particular, if p=1 then
h
Yer = %Veh1 = i
2h, 2 2

var(yp) = (1-0q")oe/(1-o)

where the variance of the prediction wvar(y,,) tends to the variance of the

process if h tends to infinity.

If the process under consideration is an ARMA(p,q) process Granger and
Newbold (1986) show that

-k
Veh = ZZ=1 Y hk T Z,LO O sn(Ve-k = Ve-k-1,1) q-h<0,

= 2::1 OkYt,h-ks q-h>0,

where V; pk="Yten-x for h—k<0. In geheral, the variance of the prediction can
be obtained by writing the ARMA model in moving-average form. Judge (1982, p.
699) presents a recursive formula to obtain the coefficients of the
corresponding MA-representation from the autoregressive parameters ¢ and the

moving-average parameters 6.

2.1.4 Modeling non-zero processes

In equation (1) we have assumed that the process y has zero mean. This

assumption boils down to exactly the same model specification as that of a
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non-zero mean process for which its mean has been subtracted from its

realization:

1y ofl) (yy — Wy) = O(L)

It should be noted that the realization has to be corrected for its mean when
calculating the a.c.g.f. of the non-zero mean process y as well, but that the
periodogram is independent from this mean. This means that standard
periodograms do not differ at non-zero frequencies for processes that only

differ with respect to their mean.

Instead of modeling a mean-corrected non-zero mean process as in (1)’ we can

model the mean explicitly as follows

()" oAL) yp = ¢ + O(L)

The mean p, of the process y is then c/a(1); an estimate fi, can be obtained
after ¢ and the autoregressive parameters have been estimated. The

possibility of extension to higher order polynomial deterministic behavior is

obvious.
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2.2 INTEGER INTEGRATED ARMA MODELS

To turn to the subject of this thesis, suppose that «(z) contains a zero-

frequency unit root of multiplicity d, where deNu{0}. Then there holds

afz) = ¢z)(1-2)"

so that equation (2.1.1) can be written as

(1) L) A-L)y; = 6(L)e,
where
$(L) = (1-$iL-gsL"~ ... ~¢,L7)
and (L) is as defined before; ¢=1,...,T. If all zeros of the polynomial ¢(z)

are outside the unit circle, equation (1) is called an AutoRegressive
Integrated Moving Average model of the process y with parameters p, d and g,
ie. 3}»~u4RIMA(p,d,q).10 This type of presentation of discrete time series was
introduced by Box and Jenkins (1970).11

In the special case where d=0, y; is said to be a realization of an
asymptotic stationary process. We get a model analogous to equation (2.1.1),
under the assumption that |& ] >1. Asymptotic stationary processes can be

distinguished as short-memory processes and long-memory processes:

An asymptotic stationary process is of short—memory if Y¥_o|hx| < +00 and of

long—memory if Y¥_o| | = +00, where by, is the k —th moving — average coefficient
g y k=0| "% s k

if (1) is put in moving —average form.

If the roots of the polynomials ¢(z) and 6(z) are outside the unit circle and
d=0, the coefficients h; of the infinite order moving-average model decay
exponentially. In particular, E°,§=0hk2 < +00 and T¥_o|bx| < + 0, i.e. ARMA processes

have short memory.

On the other hand, if the integer d>0 the process is non-stationary, except
under trivial assumptions like ¢ =0. Engle and Granger (1987) call a process y
with no deterministic component integrated of order d, denoted y~I(d), if

taking first differences d times leaves a process that has a stationary and

10
In this thesis we assume that the smallest zero of the determinant of the
polynomial function 6(z) is outside the unit circle in the complex plane.

11
The ARMA(p,q) model is an ARIMA(p,0,q) model.
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invertible ARMA model. Notice that this concept reflects zero-frequency

integration only.

The level of an integer integrated process is non-stationary. Random walk
realizations for example, where d=1, can be thought of as summations of
covariance stationary observations like ¢;. However, a positive value of d
does not mnecessarily imply that the level of the integrated process is
non-stationary: in this thesis an argument will be given for d to be any real
number and it can be shown that for a subset of positive values we deal with

a stationary process nonetheless.

It should be clear that the autocovariance and spectral generating function
are not defined for integer integrated ARMA processes, because of non-

stationarity.

2.2.1 Prediction Theory

For an ARIMA(p,d,q) process y where d>0, prediction of a realization at time
t—1 one step ahead necessarily has to be preceded by prediction of the
realization of the stationary dth differenced process. Along the lines of
Section 2.1.3 we obtain the prediction for the latter realization, denoted

Adyt_l,l. The prediction v, can be derived easily hereafter.'?

2.2.2 Testing Unit Roots Against Stationary Alternatives

AR(1) processes

To determine the order of integration of a process y Fuller (1976) proposes
the so-called Dickey-Fuller (DF) test on unit roots. The wunit root null
hypothesis H, is tested against the alternative H, of no unit root, ie. it

is a test of I(1) integration against I(0):

Hy: vy = Yeq + €
(2) Hi: vy = ¢.yea + & ¢#1,
where in both cases yy=c is a constant term and &, is independently and

identically distributed (Fuller 1976; Dickey and Fuller 1979).

12
Suppose d=1. Then yt_1’1=Ayt_1,1+yt_2,1, where Yt-2,1 can be replaced by
y¢-1 which is known at time ¢-1.
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As we exclude explosive processes from our analysis, a realistic one-sided
alternative hypothesis would be (2), where |¢|<1. It is common use to

estimate equation (2) in first differences, i.e.
(3) Ay = ag.Ypq + &

where there is a unit root if ay=0. The advantage of this expression is that

# is the t-ratio corresponding to ay and is therefore readily available.

If we can not reject the hypothesis H, it is possible that zero-frequency
unit root has multiplicity two or more. A DF test of I(2) against I(1) should
then be applied to the first differences of the process y. Rejection of the
I(2) hypothesis then wusually implies that we continue modéling first
differences instead of the levels of the process. Notice that this testing
strategy starts with the most general (unrestricted) model and continues

testing more restricted models subsequently.

Size and power of the Dickey-Fuller test
From asymptotic theory we know that ($—¢) =Op(T_1/2), or

T'%(3-¢) *2 N(0,1-¢?),

provided |¢|<1. Under the null hypothesis the asymptotic distribution is
degenerate as plimyp,g T1/2($—1)=0. Fuller (1976) showed & to be super-
consistent: ($—1)=0Oy(T _1). As a consequence of this difference in convergence
the probability that $<1 given ¢=1 approaches 0.6826 as sample size gets
large, given testing on the basis of standard normal limit distributions:
empirical size 0.6826 is much larger than nominal size (0.50). This size is
not often used in testing however. Ooms (1993, p. 23) gives another example
of the magnitude of error one can make by incorrectly ignoring unit root
characteristics. example. In table 8.5.1 of Fuller (1976) finite sample and
asymptotic critical values of @ based on T($—-1) are given, derived from Monte

Carlo studies.

Another test-statistic is defined as 7=($-¢)/d,, where &, is the least-
squares estimator of the standarddeviation of @. As the standard ¢-distribu-
tion is not a good finite sample distribution of 7 under the nullhypothe-
sis, for this statistic as well Fuller (1976) presented percentage points for
the empirical distribution of 7 (table 8.5.2). In Dickey and Fuller (1979)
analytical rtepresentations for the limit distributions of the estimator of ¢

and of the regression t test are derived.
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De Jong et al (1992) show that powers of integration tests against plausible
trend-stationary alternatives'> can be quite low (see also Dickey and Fuller
1981, table IX), just as the powers of trend-stationarity tests against
integrated alternatives can be. Furthermore, there are many cases in which
neither test will reject. Evans and Savin (1981) derive power functions from
exact distributions of @, and show that a large value of T is required to
achieve reasonable power at alternatives near the null hypothesis,
particularly for values less than unity. They prove that for ¢ near but below
unity the cumulative distribution function is very poorly approximated by the
limiting normal, even for large values of T. Cochrane (1991) warns that
application of unit root tests without consideration for their low power and
for the restrictions that they inevitably impose in finite samples can be
misleading. Furthermore, properties of unit root processes can be arbitrarily

close to those of any given stationary process and vice versa.

Blough (1992) explains that the minimum power against any stationary
alternative can be no greater than the maximum nominal size of the DF unit
root test for all elements of the composite null. Hassler (1992) concludes
from Monte Carlo experiments that in general unit root tests are not very
powerful except when the probability of a type I error is high. Therefore,
such tests can have power against any stationary alternative only if they
also have excessive probability of false rejection for some unit root

processes.

AR(p) processes
Equation (3) applies if we deal with an (integrated) AR(1) process. Said
and Dickey (1984) assume the residuals in equation (2) to be a stationary

and invertible ARMA(p,q) process, i.e.

Hy: y¢ = Y1 + %
Hy: ye = @y + U P#1

where ¢(L)u,=0(L)e, and ¢, is ii.d. again. If the data generating process of
u;, is AR(p) we simply augment (3) with lagged first-differences of y.

The stochastic process y can then be modeled as follows:

Vi = Y1 + PVea + oo+ PpVep T &t

Subtracting y,,; from both sides and reordering terms results in the

13
See appendix D.
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following equation:
, -1
(3) Ay; = gy + Zi=1akAyt—k + &

where ag=YP_10x—1 and ap= — Ll for k=1,...,p-1, t=1,...,T and p>2.

ARMA(p,q) processes

If the residual process u, is (integrated) ARMA(p,q) the DF test can still be
applied if we accept a finite AR-approximation of the ARMA-process (Said and
Dickey 1984).14 The autoregressive approximation assumption and the
accompanying fact that in practice the approximation is finite reduce the
reliability of the outcomes of the ADF-test. Firstly, use of the finite order
autoregressive approximation can influence the outcome. For example, given

the stationary and invertible ARMA(1,1) process we have
(I-al) vy = (1+7L) &,

Under the assumption that the generating process has an autoregressive

structure we have:
(1 - al)

T+ L)
(1—05[4) (1_7/L_72L2_..‘) yt = 6t

(I=(y+o)L-y(y-c)L?—-...) y; = &

If «=0.8 and y =0.2 the autoregressive order p will probably be taken equal to
one. The autoregressive root then equals 1/(y+c«), i.e. one. Use of a finite
order autoregressive approximation thus can lead to wrongly detecting a

unit-root.

Secondly, several criteria can be used to choose the autoregressive order
thereby possibly leading to alternative choices of p. The outcome of the test
therefore depends on the choice of the criterion. One criterion is based on
the t-value of the coefficient a,,. Sequentially, a lower order is chosen if
equality to zero can not be rejected. Another criterion is the variance of
the estimated residuals. In that case the minimal variance order p is chosen.
Additionally, you can take account of the order p when seaking minimal

variance. Such criteria are the Akaike- and Schwartz—criteria.

Thirdly, if we try to describe an ARMA process by a finite order AR model,

4

A necessary condition to validate an AR-approximation of an ARMA process is
that of invertibility: the smallest zero of the moving average polynomial
function ¢(z) should lie outside the unit circle in the complex plane.
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the residuals of this augmented DF test will necessarily be correlated with
the regressors: inconsistent parameter estimates are obtained if ordinary
least squares is applied.15 One of the solutions proposed is adding lagged

first-differences to the DF regression (Said and Dickey 1984).

In this thesis the following test equation is estimated when applying the ADF

test for zero frequency unit roots (compare (3') and (D2b)):
(3)" Ay = ¢+ b + agyeq + Ei;iakAyt—k T &

It should be noted that the outcome of the test depends on the choice of the
estimation period. If equation (3)’" is estimated recursively16 it is possible
that the null hypothesis is not repeatedly rejected and not repeatedly not
rejected. An application of this test procedure can be found in e.g. Ooms

(1993).

2.2.3 Measuring shock persistence

Once it is known that there exists a unit root, a measure of the permanent
component is needed. One measure is the sum of the coefficients of the
moving-average model of the first-differenced series, also known as the

cumulative impulse response. Specifically, consider

(5) Ay, = B(L) & = (1+bL+bL*+...) &,

where B(L)=¢(L)6(L).

The impact of a unit shock in period ¢ on the growth rate of Y at time ¢=k is
by, while the impact on the level of y at time ¢+k is cp=1+by+by+... +bk.17 In
the limit we obtain c,, which is the effect of a unit shock today on the
level of Y infinitely far in the future. For stationary series c,=0, because

the effect of any shock is transitory as reversion to mean or trend

15
If we approximate an ARMA(1,1) process by an AR(p) model, we get the

following model:
(-yL-v21%.. -APLP)y, = uy

where the residual ut=(~fp+1Lp+1+’yp+2Lp+2+...)yt+et, e¢ being the error term
of the ARMA(1,1) model.

16
Recursive estimation means that an observation is added to the observation

period each time the model is estimated.

17
The measure ¢ equals B(1)=B(exp{-iA}), where A=0. Therefore ¢ has to do

with the zero frequency long-run characteristics of the process.
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eventually dominates. For a random walk cy=1, ie. the effect of a shock is
permanent. In general, unit roots lead to a nonzero long-run response;
however, the particular value of ¢, depends on the specific parameterization

of the process.

Cochrane (1988, 1991) states that measures based on the quantity c, are the
only measures of the presence of a unit root in finite samples. Thus, we can
construct a trend-stationary series that is ’just like’ a given difference-
stationary series in every respect except c,. Or, by changing the periodogram
ordinate of the first differences at frequency zero without changing the
other ordinates we can construct a non-stationary series with a zero

frequency unit root from a stationary series and vice versa.

As Diebold and Nerlove (1988) note, it is possible that the infinite horizon
corresponding to B(1) is not likely to correspond to the economic horizon of
interest. Diebold and Rudebusch (1989) not only use ¢, to measure
persistence, but the sequence C={1,¢;,Cs,...,Cx}. They use C to study
persistence because then it is possible to answer the question: 'How does a
shock today affect the level of output in the short, medium, long and very
long run?’. In the long-memory models that Diebold and Rudebusch consider,
the cumulative impulse response can differ substantially from ¢, even at

quite long horizons. Note that ¢, is not measurable for finite series.

25



2.3. FRACTIONALLY INTEGRATED ARMA MODELS

The issue of modeling persistence in economic series is addressed in various
ways in the literature. Campbell and Mankiw (1987) used an ARIMA(2,1,2)
representation to model persistence in real output, whereas Watson (1986) and
Clark (1987) used unobserved components (UC) models, which are (nonlinearly)
restricted ARIMA models (see e.g. Harvey 1989). Although it is true that
ARIMA models are designed to represent the short- rather than the long-run
dynamics of an economic series, one can have doubts about a restricted ARTMA
model as being favorable to describe persistence as well. In this thesis we
investigate the merits of a generalized instead of a restricted ARIMA
representation of long-run dynamics, ie. we will allow for fractional
integratedness of economic series. This generalization has desirable

properties, to which we will return after having formalized matters.

Recall equation (2.1.1), the standard ARIMA representation of an economic

process y that is integrated of the order d:

(1) ed) 1-0)%; = 8L

where ¢(z) and 6(z) are as defined before, both polynomials having zeros that
are all outside the unit circle. If we assume that the parameter d can take
any real value instead of restricting its value to be an integer, we have the
case of fractional integration: the zero frequency unit root has fractional
multiplicity. Geweke and Porter-Hudak (1983) called these generalized models
AutoRegressive Fractionally Integrated Moving Average, denoted ARFIMA(p,d, q).

2.3.1 ARFIMA(0,d,0) PROCESSES

Suppose for the moment that the ARMA part of the process can be neglected,
i.e. that we deal with an ARFIMA(0,d,0) process or fractional noise. Geweke
and Porter-Hudak (1983) called these processes simple integrated series. To
describe the properties of such a process we first have to get the binomial

expansion of the operator (1—z)d:

@ -2 = Ty, (ot

_ ZOO I'(k-d) fi

T Lik=0 I'(-d) k!

1 - dz — d(1-d)zz _ d(l—d)(2—d)z3
2! 3!

+ ...
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where I'(d) denotes the gamma, or generalized factorial, function and is

defined as follows

® -1 -9
f s e ds if d>0
rd) = 0

00 if d=0

For d<0, I'(d) is defined in terms of the above expressions and the recurrence
formula dI'(d)=I(d+1) which holds for all values of d. Note that the
recurrence formula and I'(0)=oo imply that I'(d) has poles at the nonpositive
integers. Thus, (1-—z)d provides an infinite-order polynomial function with

slowly and monotonically declining weights.

When d> -1 the process y is invertible and has an infinite autoregressive
representation:

r(k-d)
k=0 I'(-d)

k
L —
;Tt—st

Hosking (1981) obtains this representation from the binomial expansion of
(l—z)d. From Stirling’s formula it follows that I'(k-d)/(I'(-d)k!) can be
approximated by gt JT'(=d) for k-oco.

When d<i, the process y is stationary and has an infinite moving-average
representation. Hosking (1981) obtains the moving-average representation by

inversion of (3.1) and by making use of the binomial expansion of (1—z)-d:

(1 —L)—d €t

Vi

X I'(k+d) L
=L, T(a) kT

From Stirling’s formula it follows that I'(k+d)/(I'(d) k!) can be approximated
by kd'l/F(d) for ksco. The factor k%" is summable or not depending on the
value taken by d. The fractional process is asymptotically stationary if and
only if d<i; the (asymptotically) stationary fractional process is of

short-memory if d<0 and of long-memory if 0<d<3.

In short, an ARFIMA(0,d,0) process is stationary and invertible if and only

if d is less than § in absolute value.

It is obvious that the autoregressive polynomial of infinite order has to be
approximated by a polynomial of finite order, given that a realization of a

process y consists of a finite amount of observations. We can choose to

simply  truncate the infinite autoregressive polynomial and ignore the
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remaining part. Alternatively, following Levinson (1947) and Hosking (1981),
we can derive the autoregressive coefficients of a finite order

autoregressive polynomial approximation to the polynomial of infinite order.

Let us denote the coefficient of the infinite order autoregressive polynomial
function (2) corresponding to 2 by @ Thus

o = _ TG0
ko = T(-a)(k+1)

Notice the minus sign that follows from the definition of an autoregressive
polynomial function in this thesis. Approximating the infinite order
polynomial function by a finite order p polynomial function gives equation

(2.1.7) which is represented here:

(3) V¢ = G pVe-1 + oo+ GppVip

where the second index p indicates that it is an autoregressive coefficient
of a finite order p polynomial function. Hosking (1981) derived the
analytical representation of the finite order linear regression coefficients
by solving the Yule-Walker equations for the autoregressive model of finite
order p with the Levinson-Durbin-Whittle recursion formulas (see appendix B)

for the autoregressive coefficients of (3) for p=1,...,T-1:

_ p(p=1)...(p-k+1) _ _
(4) ak,p = ak,w‘(p_d)(p_d_l)“. (p—d—-k‘+1) k—1,2,...,p 1
d
() @y = 577
where
—-d(1-d)...(k-1-d
(6) A0 = —[ ( )k!( )} k=1,2,...

The discrepancy between the infinite and finite order autoregressive
coefficients which are necessary for applying the infinite polynomial
operator to a finite realization of the process y is clearly seen from figure
2.5. Given that we approximate the infinite polynomial by a polynomial of the
order p=100 we see that the coefficients ay 9o seem to account for the
truncation of the polynomial at high k. This reveals the short-coming of

simply truncating a polynomial of infinite order.'®

18From (4) and (6) the following recursions can be derived:

(6" ak’o‘,:ak_l’w.(k—l-d)/k; ay,0=0; k22; ag =1;

4" ak,p=ak_1,p.(p—k+1).(k-l-d)/((p—d—k+1).k); al,p=d.p/(p—d); k>2;
a(),p=1'
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Instead of applying the finite version of the infinite lag operator or simply
truncating the infinite lag operator in the time domain, Geweke and
" Porter-Hudak (1983) propose to premultiply y, by the infinite operator in the
frequency domain after which the result is transformed back to the time
domain. However, Sowell (1987, 1992b) proves that this procedure suffers from
the time domain truncation problem as well, as was not expected by Geweke and

Porter-Hudak.
2.3.1.1 The autocovariance function

To derive the autocovariances we make use of the moving-average
representation of the ARFIMA(0,d,0) process. It can be shown (Gourieroux and
Monfort 1990) that the k-th order autocovariance is

_ g2 Ilk+d) I(1-2d)
Yy(k) = ae'P(k+1_d)'F(d)F(1—d)’

having the same sign as the order of integration d for k>1."° Making use of
Stirling’s formula we can write for large &
2 ,2d-1 I'(1-2d)
R~ 0B =4y
It shows that the convergence to zero is hyperbolic and thus slower than the
exponential decay of the autocovariance function of ARMA processes. Indeed,

the k-th order autocorrelation for ARFIMA processes is

pytk) = L&)

T o,(0) ”

where d <% and k-oo.

2d-1

k

The long-memory property of fractionally integrated processes can be
illustrated by comparing the autocorrelations of two stationary series where
we allow one to be fractionally integratedzo. The two are an ARIMA(1,0,0)
process with coefficient oy =0.5 and an ARFIMA(0,4,0) process. The example is
taken from Diebold and Rudebusch (1989).21 The autocorrelations ,o},(k)=oz'1c for

19
A recursive formula to compute the autocovariances is:

Ty(k) = 'yy(k—l).(k—1+d)/(k—d), kz1;
given 7y(0)=0'g.F(1—2d)/{1"(1—d)}2.

2ONotice that stationarity does mnot exclude series to be zero frequency
integrated of some order d, where d is a fraction. However, if d s
restricted to be an integer then integrated processes are non-stationary and
vice versa.

21
In their Table 1 Diebold and Rudebusch (1989) mistakenly associate the given
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the ARFIMA(1,0,0) process can be derived from the a.cgf.; for the
ARFIMA(0,4,0) process it can be derived that the autocorrelation function is

given by p,(k) = (1-d)I(k+d)/{T(d)I(k+1-d)}.

Table 3.1
Theoretical Autocorrelations of an ARIMA and an ARFIMA Process

lag k 1 2 3 4 5 10 25 50 100
(1-0.5L)y; = & 0.50 0.25 0.13 0.06 0.03 0.00 0.00 0.00 0.00
(1-L)y,=¢, 0.50 0.40 0.35 0.32 0.30 0.24 0.18 0.14 0.11

From Table 3.1 we see that the decay in correlation between observations &
periods apart is much slower for the fractionally integrated process. It is
therefore that those processes are usually called ’long-memory’ processes,
whereas the usual ARIMA(p,0,q) processes are labeled ’short-memory’. Notice

that the first order autocorrelations for the two processes are the same.

2.3.1.2 The pseudo-spectrum

In Table 3.1 a comparison between two processes has been made in the time
domain. In the frequency domain we can make a comparison between the two
processes from Table 3.1 as well. However, a problem arises with the
ARFIMA(0,4,0) process. If y~I(d), d nonzero, the process y does not strictly

possess a spectrum but we can define a pseudo-spectrum as follows:

-1 . . -
(7) fy(A) = (21) 7. gy(exp{ —iA}). |1 - exp{—iA}| >
This follows from the fact that differencing a series once in the time domain
is equivalent to multiplying its spectrum by |1-exp{—iA}|? in the frequency

domain.

As g,(exp{—1iX )=az for ARFIMA(0,d,0) processeses (see (2.1.4)) the pseudo-
y .

spectrum reads

correlation function with an ARFIMA(0,0.3,0) process.
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15(A) (0%/2m). |1—exp{—ir}| %

which equals

fyA) = (0%/2m). (2sin(A/2) "
If A tends to zero we have
(8)  f,(A) = (0%/2m). |L—exp{—iA})| 2L ~ (02/2m). X2

Thus, the behavior of ARFIMA(0,d,0) processes is proportional to A2 for A
near zero frequency, whereas for nonfractional ARIMA processes that are
multiplicity one integrated it is proportional to A2 (substitute d=1 in
(8)). As such, ARFIMA processes can be seen as a generalization of the zero

frequency unit-root case (i.e. the unit root +1).

The pseudo-spectrum is also useful to understand the difference between short
memory and long memory (or non-stationary) processes. For the latter
processes the pseudo-spectrum tends to infinity if A tends to zero. The
velocity depends on the exponent d: the closer d to } the higher the
velocity. This can be seen from the figures 2.6 and 2.7. The
long-memory property of ARFIMA processes is very clearly revealed by the
autocorrelation function. Although in Table 3.1 the autocorrelation function
revealed this typical behavior already for d=4%, this property is even more
clear from figure 2.6 for d=0.45. Furthermore, it can be seen from the s.g.f.
that the restriction of the long-memory property is on fewer frequencies than
the restriction of other types of behavior on frequency points. Application
of a fractional filter to a realization of a process therefore has a less
disturbing effect on the behavior of that process — in terms of number of

affected frequencies — than e.g. the (stationary) autoregressive filter.

The short-memory property of ARFIMA processes, i.e. d<0, turns up from the

time domain as well as from the frequency domain. From figure 2.7 we see that
a relatively small part of the variance of such processes is explained by the
low-frequency behavior and a relatively large part by the high-frequency
behavior. The autocorrelation function of short-memory fractional processes
turns out to compare well with that of an MA(1) process with negative
parameter (compare e.g. d = —0.25 with § = —0.1). The realizations of the figures
2.6 and 2.7 are obtained by an indirect Cholesky decomposition of the

varianc-covariance matrix procedure (see Section 2.4.1).
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Figure 2.6
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Figure 2.7
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2.3.1.3 Prediction theory

Making a prediction given a realization of a fractionally integrated process

without any autoregressive and/or moving-average structure requires that we

take account of the infiniteness of the autoregressive polynomial expression
of the model. We choose to approximate the infinite autoregressive polynomial
by the finite order polynomial expression (3) where the autoregressive
coefficients are derived by Hosking (1981). Along the lines of section 2.1.3

we obtain predictions from the autoregressive model thus obtained.
2.3.2 ARFIMA(p,d,q) PROCESSES

ARFIMA(0,d,0) processes as described in the previous section have a very
distinctive auto-correlation structure and therefore can only be of limited
value to model long memory data. However, if we extend these models to
account for short-run dynamics as well, a very broad class of possible

autocorrelation functions results.

The low-lag correlation structure of fractionally integrated processes is
modeled by an ARMA part which we neglected in Section 2.3.1. The parameters ¢
and 6 can be chosen to describe this low-lag correlation structure, whereas
the parameter d accounts for the correlation between observations that are

very distant from each other (see equation (1)).

To ensure stationarity the order of integration d should be less than } and
the roots of the equation |¢(z)| =0 should all lie outside the complex unit
circle. If d> -4 and the root of the equation |6(z)| =0 lies outside the unit

circle the ARFIMA(p,d,q) process is invertible.

The long-term behavior of an ARFIMA(p,d,q) process may be expected to be
similar to that of an ARFIMA(0,d,0) process with the same value d, if for
very distant observations the effects of the ¢ and 6 parameters will be

negligible. Hosking (1981) shows that this is indeed the case:

Given that vy is stationary and invertible, the spectral density f,(A) and the

autocorrelation function p,(k) have the respective properties:
limysofy(A) = A
limgoapy(k) =k

35



This theorem expresses that the effect of the parameter d decays
hyperbolically as the lag increases, whereas the effect of the ARMA

parameters decays exponentially.

2.3.2.1 The Autocovariance Function

Sowell (1987, 1992b) shows that for ARFIMA(O,d,q) processes the autocovarian-

ces have the form

2 [(1-2d).T(d+k—1)
7k = 0o )y YO FEy. T I=d) T T = d=kF1)

where

W(l) = in{q,q-1} 9.91‘_1

i=max{0,1} °

For ARFIMA(p,d,q) processes the autocovariances look like

k) = oL Yi_ Y W03 Cldyp+l=kpj)

where ¥(l) is as defined before,

P -1
G = [os JL0-p00 11 (030

.m;r-‘ J
and the factor C(d,p+I-k,p;) can be computed recursively from

_ Ir(1-2d).I'(d+h)
Cldshop) = Py T(I=d). T(1 =d¥h)

[pZPF(d+h,1;1—d+h;p) + F(d—h,l;l—d—h;p)~1]

where the hypergeometric function F(a,b;c;x) is defined by

L T(a+n)'(b+n)I(c) n
F(a,b;c;x) = ZO:=O [’(a)]’(b)[‘(c+n)[’(n+1)'x

for which the following recursion holds

c-1
pla—1)

For each evaluation of the likelihood function only p different

F(a,15¢5p) = [F(a-1,15¢-15p) — 1].

hypergeometric functions need to be evaluated. The p,s result from the

factorization of the autoregressive polynomial, i.e. ¢(2) =H1}=1(1—pjz).22

22
For this factorisation to hold Sowell (1992b) assumes that the

autoregressive  polynomial roots are  simple. By  Monte Carlo simulation  he
shows that this is mnot a binding restriction at an empirical level. In
addition Sowell assumes that d<%, the autoregressive and moving-average
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2.3.2.2 The Pseudo-Spectrum

From equation (7) we derive the pseudo-spectrum for the general ARFIMA(p,d,q)

process

oz B(exp{ir}) 2

(9) fy(A) = 5= B(explirt) | 1-exp{-ir}| =2

If A tends to zero we have

fy(A) ~ gy(1). |1-exp{—ir}| 24 ~ g,(1).A7%

which means that near zero frequency behavior of ARFIMA(p,d,q,) processes is

proportional to A2

From (9) it follows that if we look at the lower angular frequencies of fy(A)
we are able to say something about the order of integration d. Because the
shape of the pseudo-spectrum uniquely determines the relationship
fy(N)/ |1-exp{-iA})| 72 we can determine the second order characteristics of
the process (l—L)dYt (for large t) if we know the pseudo-spectrum (e.g.
Geweke and Porter-Hudak 1983).

From the frequency domain it is clarifying to see that neither not
differencing, nor differencing a fractionally integrated series once — ie.
applying integer differencing —— are good ways to proceed. Furthermore it
reveals that fractional differentiation has attractive features that seem to
be tailor-made for the ’typical spectral shape’ problem, mentioned by Granger
(1966).

2.3.2.3 Prediction Theory

If we deal with a fractionally integrated process (1) with autoregressive
parameters we have to make use of the concept of convolution in order to
derive predictions from this model, i.e. convolution of the finite order
autoregressive coefficients (4) and (5) corresponding to the fractional
filter (2) and those of the autoregressive polynomial ¢(z). Specifically,
given the finite pl order autoregressive polynomial a(z) and the finite p2

order polynomial ¢(z) defined as

polynomials are of an order less than or equal to p and ¢ respectively, all
polynomial Troots are outsi%e the wunit circle and & is normally distributed
with zero mean and variance o,.
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= N e

2 pl
a(z) =1-aypz—0yp2 —... —lp pi?

B(2) =1-¢rz=¢52"—... ~bpa?”
the k-th coefficient of the convolution &(z)=¢(z)a(z) is given by
& = Z§=0¢jak—j,pl

where k=0,1,...,pl1+p2 and ag p =¢g=1.

Geweke and Porter-Hudak (1983) use a truncated version of the infinite order
autoregressive coefficients @, as given in (6) to approximate the
fractional filter (2). Given the finite order autoregressive polynomial
function &(z) we can make the predictions as usual. After convolution,
predictions from an ARFIMA(p,d,q) process can be obtained by application of
the prediction theory with respect to ARMA(p,q) processes as described in
Section 2.1.3.

2.3.2.4 Testing Unit Roots Against Stationary Alternatives

In section 2.2.2 we described the (augmented) Dickey-Fuller test for zero
frequency unit roots. This test amounts to the comparison of omne point, ie.
p=1, against a whole range of stationary alternatives |p| <1. We started by
assuming i.i.d. residuals &, and allowed for stationary ARMA(p,q) residuals
u, later on. In both cases the residuals are zero frequency integrated of the

order zero, i.e. €,~I(0) and u,~I(0).

In this section we assume wu, to be general fractional noise (Geweke and
Porter-Hudak 1983), i.e. wu,~I(8) where the parameter of zero frequency
integration & can be any real number less than one half in absolute value.

The null hypothesis is:

Ho: y¢ =Ye1 + U
where ¢(L)(1—L)6ut=0(L)st which implies that under this hypothesis
(1) ¢(L) (1-L)'; = O(L)e,

where d=1-86, de(-1/2,3/2) and ¢, i.i.d. again.

Dickey-Fuller unit-root testing now amounts to regressing y; on Yy, the

estimator ¢(1) in (1) converging to its asymptotic distribution at a rate
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crucially depending on @ (Sowell 1990). For d<[0,4) the convergence result is

($1—1)=OP(T _)
whereas if de(-},0) the convergence is faster or slower than O(T-'/2) as & is

greater or smaller than -4, respectively. In this case

($1-1)=0,T""")

~

-2d-1

Sowell (1990) proofs that the (augmented) Dickey-Fuller tests are invalid if
one allows for residual (genmeral) fractional noise, except when =0 or d=1.
Diebold and Rudebusch (1991) conclude that the power of the Dickey-Fuller
tests (Fuller 1976) against fractionally integrated alternatives is quite
low. Diebold and Rudebusch (1991) illustrate this with a Monte Carlo
experiment. Sowell (1990) as well conjectures that commonly applied
Dickey-Fuller unit root tests under fractionally integrated alternatives have
quite low power. Although asymptotically the integer unit root distribution
differs severely from its fractional equivalent, finite sample distributions

. o 23
are rather similar.

As an alternative test for zero frequency unit roots it is possible to
estimate the parameter of integration d in equation (10). As the parameter
values under the null hypothesis reflect non-stationarity, the model for the
first differences Ay, has to be estimated instead and an estimate of d can be
obtained as 1-8, where & is the estimated 6. Notice that these tests are
valid in case of fractionally integrated processes as well as in case of ARMA

processes, as opposed to the (augmented) Dickey-Fuller tests.
2.3.2.5 Measuring shock persistence

Analogue to equation (2.2.5) we define the cumulative impulse response

function in case of fractional integration as follows:
Ayt = B(L) €t = (1+b1L+b2L2+...) €t

where now B(L) = ¢(L) (1 —L)"SH(L), where § =d —1. Under the assumption § <d <14

there holds -1<&<%, ie. the first differences follow a fractionally

23Sowell (1990) shows that the asymptotic fractional wunit root  distribution
may be severely misleading in all but very large samples. This is because the
distribution of ¢; in the AR(1) case depends on two underlying random
variables, the convergence of one of which to its asymptotic distribution is

very slow for plausible d values of fractional integration.
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integrated stationary and invertible ARMA process, and therefore the

coefficients b; are square summable.
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2.4 SIMULATION EXPERIMENTS

In this section we first describe two procedures to generate a realization
from a theoretical stochastic process. Secondly, wusing one of these
procedures we perform simulation experiments in order to be able to identify
the quality of variance- and autocovariances-estimates for different kinds of
models. Variances and covariances play a crucial role in model

identification.
2.4.1 Generating a realization from some process

If we want to generate a realization ¥;,Vs,...,yr of a stochastic process y
the general idea is to start from a normally distributed white noise sequence
which under some transformation gives us a realization of y. This

transformation can be carried out in two ways.

Given that y~ARMA(p,q) an obvious and easy way to procede is to generate a
white noise sequence &;,&,,...,6p and just combine these values according to
the formulated model. Note that for this procedure we need p4gq start-up
values in order to generate a realization of length T. For T not too small
the influence of these start-up values is negligible because of the

short-memory property of ARMA processes.

Another procedure is presented in McLeod and Hipel (1978, p. 497). Suppose we
want to generate a T dimensional realization from a zero mean stochastic
process y that is characterized by the theoretical variance-autocovariance

matrix Q, i.e.

Ty(0) .. vy(—p+1)

Yy(p=1) ... 71y (0)
Premultipiica,tion of the vector of white noise observations & by a
transformation matrix, say M, gives us a realization of y if an only if
Q = MM
which is called a direct Cholesky decomposition of the variance-
autocovariance matrix Q of the process y. The matrix M is lower triangular.
In general, if y~ARMA(p,q) it is possible to generate a vector of

realizations y of a process y with mean vector p and autocovariance-matrix Q

as follows
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y = p+ Me
If we procede in this way we do not need start-up values to generate a

realization of y.

For ARMA processes both procedures can be pursued. However, if we want to
generate a realization of y~ARFIMA(p,d,q) only the second procedure is
relevant: the first procedure depends on the influence of start-up values
which only dies out very slowly because of the long-memory property of

fractionally integrated processes.

The transformation matrix M is found by a direct Cholesky decomposition of
the variance-autocovariance matrix Q. Alternatively, the matrix M can be
computed from an indirect Cholesky decomposition of Q as suggested by Jonas
(1981). Whittle (1983, §3.4 and §7.1) shows the correspondence between the

autocovariance matrix Q and the finite order autoregressive coefficients a ,

(1) o' = AXA

where
1 —al,l —(12’2 e —ap,p A
g é ’ai,Z ~lp-1,p
- ~Yp-2,p
2) A=3xgY = . .
0 0 0 ay p
L 0 0 0 ]
2 . 2 2 2
(3) Y = diag(00,0%,.-.,0p)

such that if Q=MM’'then M'=X"'A'. The autoregressive coefficients of the
matrix A and the elements of the diagonal matrix ¥ are computed recursively

).24 Storage

from the Levinson-Durbin-Whittle algorithm (see appendix B
requirements are proportional to T?> for bothdirect and indirect Choleky

decompositions. The advantage of performing the Cholesky decomposition

24
In Jonas (1981) and Jonas (1983) there are some notational inconsistencies

in the formulas concerning the indirect Cholesky decomposition. The correct
formulas are stated in appendix B. Corresponding to these formulas they give
the formulas to obtain a realization of the process y recursively. These
formulas should read

-1
y = (I-M )y + €

-1 -1
where M =% A'and therefore there holds

Y1 = 00%
t-1
ye = k):lak,t-ﬂ’t-k + 04181 t>2
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indirect is in terms of computation time which is proportional to T2,
contrary to T® in case of a direct Cholesky decomposition. Notice that p=T-1

for a series of length T.

2.4.2 A simulation study on variance and autocovariances

The variance and autocovariance structure of a process have to be estimated
in practice. The importance of the autocovariances in model identification on
the one hand and their relationship with the spectral density function on the
other hand makes it interesting to investigate the quality of the empirical
estimates of the population variance and autocovariances. We use simulations
to investigate these empirical properties given the theoretical mean and
covariance-structure of the relevant process (e.g. McLeod and Hipel 1978;
Granger and Joyeux 1980; Geweke and Porter-Hudak 1983). In general, we want
to investigate the empirical properties of a certain statistic S using

simulations.

Suppose we generate N independent simulations of a covariance-stationary
time-series vy,Ys,...,yr and the statistic S=8(vy,¥s,-..,yr) is calculated in
each simulated series. The empirical mean S is then the average over N
simulations. If each realization %;,Vs,...,yy is independent of the other
realizations so that the empirical averages of the statistic S are mutually
independent, we can calculate the variance Vs of S. By the central limit
theorem, S will be distributed very nearly normally with mean equal to £[S]
and with variance approximately equal to Vg/N. The standard deviation and
confidence intervals for the expected value being estimated are readily
obtained from Vg/N (McLeod and Hipel 1978, p. 501).

In the context of simulation of fractionally integrated processes the
following point is of great importance. Suppose we generate series of length
NT and then subdivide it into N series of T data—points. This procedure has
bad consequences if adjacent data-points are heavily correlated and
subsequently the N resulting estimations of S. The resulting estimate for
E[S] will be less precise (i.e. has larger variance) and the estimate of the
variance will be underestimated, so that the correct standard deviations and
confidence intervals for £[S] will not be available. For a simulation study
on fractional processes we therefore explicitly generate N realizations of

dimension T.
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The Geweke and Porter-Hudak (1983) experiment replicated

Let us start with a replication of the Geweke and Porter-Hudak (1983, Table
1) simulation study of a fractionally integrated process. In their experiment
they generate N =4000 realizations of dimension T =265 from zero mean
ARFIMA(0,d,0) processes for d=0.25 and d=0.45. They apply the indirect
Cholesky decomposition of the variance-autocovariance matrix procedure in
order to generate a single realization, ie. they use the Levinson-Durbin-
Whittle algorithm. As the variance of the generated processes equals one we
can read autocorrelations when we discuss the autocovariances. The computer

code we used is written in Convex/Unix Fortran.

In figure 2.8 we present graphically the results of the replication of the
Geweke and Porter-Hudak (1983) experiment in the upper two paJnels.25 The
corresponding tables can be found in appendix C. The mean estimated
autocovariance function seems to coincide almost exactly with its population
equivalent in both cases. The mean variance and the first 25 mean
autocovariances are slight underestimates if d=0.25, whereas they are slight
overestimates of the population variance and autocovariances if d=0.45 as can
be observed as well from Table 1 (Geweke and Porter-Hudak 1983). The

confidence interval is larger if d=0.45 than in the other case.

From personal communication with Geweke (1992) we discovered that the
autocovariances in Geweke and Porter-Hudak (1983) are computed given the
population mean of the simulated process. Although not mentioned in Geweke
and Porter-Hudak (1983) this information appears to be crucial for the
identification of the quality of the estimate of the autocovariance function.

Of course, in practice such information is hardly ever known.

The consequence for the estimated autocovariance functions of not making use
of the population mean of the process but estimating it in each replication
can be observed from the lower two panels of figure 2.8. The table can again
be found in appendix C. For d=0.25 processes the mean estimated
autocovariance function appears to lie below the theoretical autocovariance

function, although they do not differ significantly. The mean estimated

25
The line represents the theoretical autocovariance function, the dots

represent the mean estimated autocovariances from 0 up to the order 49 over
N=4000 replications and the dot-dash lines represent the mean minus two times
sigma and mean plus two times sigma confidence intervals.
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Figure 2.8
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autocovariance function for d=0.45 processes differs significantly from its

theoretical equivalent. What has happened?

Underestimation of the sample autocovariance function

It is possible that the phenomenon described above onmly takes place if we
deal with fractionally integrated processes. Therefore it seems useful to
investigate the phenomenon and make a comparison with an alternative process
at the same time. We have already noted that the autocovariance functions for
the ARFIMA(1,4,0) process and the ARIMA(1,0,0) process where o=0.5 are

comparable.

The set-up is as follows. We generate N=1000 replications of realizations of
length T=300 for both processes and calculate the mean of the estimated
variance and autocovariances over 1000 replications, first given that the
population mean of the sample is known and second given that we have to
estimate the mean of the sample each time the autocovariance function has to
be computed. For both processes we employ the indirect Cholesky decomposition

procedure.

The consequence of using the sample instead of the population mean of the
processv for the calculation of the autocovariance function is the same for
both processes. The underestimation problem in case of the ARIMA(1,0,0)
process turns out to be less severe than in case of the ARFIMA(1,4,0)
process. The reason of the underestimation is evident if we observe the
histograms that are depicted in the figures 2.9, 2.10 and 2.11 on estimated

. . 26
means, variances and covariances.

From figure 2.9 we see that the N=1000 estimated means of the generated
samples from the ARFIMA(0,1/3,0) process have a much larger spread around
zero than the estimated means of the ARTMA(1,0,0) samples, though for both
processes about symmetrically distributed with respect to zero. The

consequences are observed from the next two figures.

In figure 2.10 we have depicted the the N=1000 estimated variances of the
ARFIMA(0,1/3,0) process and the ARIMA(1,0,0) process given the population

mean in the first and second panel respectively, whereas in the lower two

26
The text »d=1/3" in the title of a depicted histogram indicates that the

process under consideration is ARFIMA(0,1/3,0); if the text reads ?alpha=1/2"
the process is ARIMA(1,0,0).
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panels the histograms are given if we estimate the mean of each generated
sample. We conclude first that histograms of the estimated variances, whether
the population or sample means are used, are skewed to the left for the
ARFIMA process and symmetrical around their population value for the ARIMA
process. Secondly, with respect to the ARFIMA process, the estimated
variances reveal a much larger spread if the population mean is used than
when the mean is estimated. Consequently, the mean of the variances over 1000
replications coincides more with its theoretical value if the population mean
information is available. Thirdly, the histograms for the ARIMA process have
a comparable spread of the estimated variances. The histograms for the

first-order autocovariances in figure 2.11 show equivalent results.

In conclusion: Suppose that in a simulation experiment where N samples are
generated from a fractionally integrated process the mean of the N estimated
autocovariance functions is taken as an estimator of the population
autocovariance function. Then, if we do not have information about the
population mean of the process, this mean function falls severely short of
the population function mnot because the estimated variances and
autocovariances are skewed to the left, but because the spread is much
smaller and therefore the skewness is more impor‘cant.27 In Brockwell and
Davies (1991) the slow convergence of the estimator of the mean to the

population mean for long-memory processes is indicated.

The Granger and Joyeux (1980) experiment replicated

A second type of simulation experiments has been performed by Granger and
Joyeux (1980). They recognized the fact that the McLeod and Hipel (1978)
method to generate a sample of observations could be time-consuming for T
about 200 or more because it includes the direct Cholesky decomposition of

the variance-autocovariance matrix (. Instead of wusing the alternative

2‘T(J‘rra.nger and Joyeux (1980) also encountered the problem of serious
underestimated variance and autocovariances. Geweke (1992) believes that
their problem is caused by taking a denominator of 4000 instead of 4000-k
when calculating a k-th order autocovariance. However, it is possible that
their problems can be attributed to the wuse of the sample mean when
calculating the autocovariance functions.

Granger and Joyeux (1980) wused the McLeod and Hipel (1978) procedure to

generate 100 start-up values for an AR(100) approximation to an
ARFIMA(0,0.25,0) and an ARFIMA(0,0.45,0) process. Series of length 400 were
generated. The estimated and theoretical autocorrelations matched more

closely for d=0.25 than for d=0.45.
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Jonas’s (1981, 1983) indirect Cholesky decomposition method they proposed to
approximate the infinite order autoregressive polynomial by a finite order
autoregressive  polynomial. Notice that the finite order polynomial
coefficients are obtained from solving the Levinson-Durbin-Whittle

recursions.

Given the autoregressive coefficients it 1is easy to calculate a new
observation from the past observations. However, to procede in this way
start-up values are needed. Granger and Joyeux (1980) used the MclLeod and
Hipel (1978) procedure to generate the start-up values necessary for the

finite autoregressive approximation.

Specifically, Granger and Joyeux (1980) used the McLeod and Hipel (1978)
procedure to generate 100 start-up values for an AR(100) approximation to an
ARFIMA(0,0.25,0) and an ARFIMA(0,0.45,0) process. Series of length 400 were
generated. The estimated and theoretical autocorrelations matched more
closely for d=0.25 than for d=0.45.2® From their tables it is observed that
for d=0.25 the mean estimated autocorrelations of each order are
overestimated, whereas these are underestimated for d=0.45. The estimated and

theoretical autocorrelations matched more closely for d =0.25 than for d=0.45.

Ceweke (1992) believes that their underestimation problem is caused by some
kind of tapering or windowing, e.g. taking a denominator of N instead of N-k
when calculating a k-th order autocovariance, where N denotes the number of
simulations. However, it is possible that their problems can be attributed to
the use of the sample mean when calculating the autocovariance functions, as
appeared to be the case when dealing with our underestimation problems. In
order to check this we replicated the Granger and Joyeux (1980) experiments.
Series of length T=400 given 100 start-up values were generated 1,000 times.
However, we had difficulty even getting a satisfatory estimate of the unit
variance of the process, as can be verified in appendix C. The reason for

this is yet unknown.

The influence of sample size on the results
In this experiment we try to determine the influence of sample size on the

results of the simulation studies reported above, i.e. for T=50, 100, 200 and

8
Granger and Joyeux (1980) did not mention how many series of length T were
generated for each process. It could be that they generated one for each

process.
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300. Thereby we make a comparison between the results of the experiment when
the autocovariance function is computed given the theoretical mean of the
process and those given the sample mean of the process. There will be two
processes under consideration: the ARIMA(1,0,0) and the ARFIMA(1,41,0)

processes from Table 3.1, respectively.

The figures 2.12 and 2.13 deal with the ARFIMA(1,3,0) process. The mean of
the autocorrelation functions that are estimated given the population mean
show a pattern as expected: for all four sample sizes they approximate the
theoretical autocovariance function satisfactory. The influence of sample
size is on the width of the confidence interval. However, if the sample mean
is used for computation of the autocovariance functions we are confronted
with the familiar problem of underestimation of the theoretical
autocovariance function for all four sample sizes. Although the confidence
intervals are smaller the higher sample size the theoretical autocovariance
function is almost on their upper border and therefore almost significantly

different from the mean of its empirical equivalents.

The figures 2.14 and 2.15 deal with the ARIMA(1,0,0) process. Comparing these
figures reveals that the confidence intervals of the mean of the estimated
autocovariance functions for the ARIMA(1,0,0) process are smaller than for
the ARFIMA(1,3,0) process for each sample size. For the ARTMA(1,0,0) process
the underestimation becomes smaller as sample size grows if the sample mean
is used, as is observed from figure 2.15. The width of the confidence

intervals are comparable with that of the ARFIMA(1,},0) process.
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Figure 2.12
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Figure 2.13

simulation experiment, d=1/3, sample mean, T=50

2 T T T T T T T T T I_/
-2 L L L L L L L L L ‘\"
0 5 10 15 20 25 30 35 40 45 50
. simulation experiment, d=1/3, sample mean, T=100
0.5 % ]
OF T -
-0‘5 L e e i
To 5 10 15 20 25 30 35 40 45 30
. simulation experiment, d=1/3, sample mean, T=200
0.5 k% |
\_\f ~~~~~~~~~~~ 1_~_‘_‘-__-__‘
O B ___MM;_;_;w.__;_'.-._.N;_;_;_l‘ s e . j___i_ ...........................
-0.5+ ~
o 5 10 15 20 25 30 35 40 45 50
, simulation experiment, d=1/3, sample mean, T=300
05N .
O B § \\.QNA‘>-.-‘-.'~~ ........... -—‘~ L T ‘._. .... -_—_ ........ ».‘_ .........
-0.5 -
o 5 10 15 20 25 30 35 40 45 50

54



Figure 2.14

simulation experiment, alpha=0.5, population mean, T=50
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Figure 2.15

simulation experiment, alpha=0.5, sample mean, T=50
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3. ESTIMATION OF TIME SERIES MODELS

In this chapter we present four techniques for estimation of the models
discussed before. The emphasis will be on the performance of these techniques
with respect to models of fractionally integrated processes. In particular,
the first three techniques to get an estimate of the fractional order of
integration require a specification of the autoregressive and moving-average
structure of the process. Application of the fourth technique as presented in
Section 3.3 gives a parameter estimate irrespective of this model structure.
This makes it possible to direct the estimate of the integration parameter

for long-run modeling purposes only.

The first two estimation techniques which will be discussed in Section 1 lead
to estimates of autoregressive and/or moving-average parameters only, i.e.
the parameter of integration is supposed to be given. In Section 2 a maximum
likelihood estimation technique is discussed which takes into account all
parameters simultaneously. The Geweke and Porter-Hudak (1983) two-stage
estimation technique gives an estimation of the parameter of integration d at
the first stage (Section 3). The remaining ARMA parameters are estimated at
the second stage (Yule-Walker, OLS, ML).

3.1 YULE-WALKER AND ORDINARY LEAST SQUARES ESTIMATION

Given a stationary process y we can estimate an autoregressive model without
moving-average parameters by using the Yule-Walker equations (see Section
2.1.3); substitution of the sample autocovariances (or autocorrelations) then
gives the estimates of the finite order autoregressive parameters ag p. The
same methodology can be applied when we have to estimate an ARMA model. Box
and Jenkins (1976) present Yule-Walker equations where both autoregressive
and moving-average parameters are taken into account. McLeod (1975) presented
an algorithm suitable for the machine calculation of the solution to these
equations.29 It should be noted that here the quality of the autoregressive
and moving-average estimates depends on the quality of the estimated

autocorrelations as well.

29
The definition of by in McLeod (1975) should read bk=zg=k‘9ici-k'
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An alternative method to estimate autoregressive models is the ordinary
least-squares technique, the advantage of which is that using this technique
under non-stationarity is justified as well. Unit root tests are not

necessary as we can model the realization in levels.

3.2 MAXIMUM LIKELIHOOD ESTIMATION

A third methodology is called maximum likelihood and is based on the joint
probability density function (p.d.f.) of the process y, which has to be
stationary once more. The joint probability density function of the process y

as in equation (2.1.1) can be written as
T-1
(1) Fy1LY2--yr|¥) = tl_-_Iof(yT—tlyT—t—laW)

where Y= (Y4 Ve1---,v1) 18 the information available up to period ¢ and

f(v1|Yo) =f(y:) by definition. The vector of parameters is defined as

v’ =(¢17"°7¢p301a“')9q702)

in case of ARMA processes. If we deal with fractionally integrated ARMA

processes this vector reads

v = (d7¢17-“a¢p’91a" '70q702)'

If the observations become available we can calculate the value of the
function f, given some vector of parameters ¥. If other parameter values lead
to an increase in the value of the function f these values can be seen as
more adequate. This is the principle of maximum likelihood: the function f is

reinterpreted as the likelihood function L(¥|Yr) and has to be maximized for

a unique vector of parameters.

If y is a process that has p autoregressive components, the joint probability

density function (1) can be written as
T-1
F(Y1,Y25- -5 VT l V) = f(Yp)- t_]};lﬂf(B’T-t | Yr i)

where f(Y,) is the joint probability density function of the first p
observations. Depending on the decision to ignore f(Y,) or not, the
conditional and exact log-likelihood functions follow from

T -
Inf(y1,y2p--s¥r|¥) = Y, nf(yr-e| Vroe)

and
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=

T-1

t=p+ 1lnf(3’T-t l Y1)

lnf(ybym”'ayTIW) = lnf(yp) +

respectively. As exact maximum likelihood procedures turn out to be superior

to conditional ones they are preferred.

Exact maximum likelihood requires specification of the function f(Y,). Given

our earlier experience (see Section 2.4), however, there appears to be a
maximum likelihood concept that does mnot suffer from this problem with
starting-up values. Under the normality assumption the p.d.f. of the zero

mean process y equals

-T - -1
F vz svr|¥) = (20) 72|10 Pexp{ -1y Qly }.

where Q is the variance-autocovariance matrix of the process. Normalizing
this matrix with respect to the variance of the process, i.e. writing
Q=7y(0).0,, we obtain

-T/2

17,(0)0, | ?exp{ - y' 0y }

f91Y2---yr|¥) = (2m) 7270

The matrix Q, and thus 7,(0) and the normalized variance-autocovariance
matrix Q;, are determined by the vector of parameters ¥. The inverse and
determinant of the matrix Q, are obtained by solving the Levinson-Durbin-
Whittle recursion formulas (see appendix B) as II=AE_1A' and |Ez|,
respectively. The matrices A and X are defined as in (2.4.2) and (2.4.3),

respectively.

Substitution, taking logarithms and finally multiplying through by -2 we

obtain
(2) —2-lnf(y1,3/2,--~,)7TlW) =
= T.In(2r) + T.In(1,(0)) + |Z°] + y A% Ay [ 1,0)

= T.in(2m) + Tln(ry(0)) + Yo 0t + Y, ,e=yea,0)’/ (02475(0))
where y;;; equals the right-hand side of equation (2.1.7). The function
f(Y,|®) is reinterpreted as the likelihood function L(¥|Y7) and has to be
maximized with respect to ¥ as soon as the observations become available.
Given a numerical optimization procedure we can find the optimal vector of

parameters ¥.
The second expression of -2inf(Y,|¥) in (2) is termed the prediction error

decomposition form of the likelihood (see e.g. Harvey 1989). Note that the

prediction error (y;—vy:1,1), 0?_1 and the variance of the process 7,(0) are
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determined by the autoregressive and moving-average parameters and the

. . 2
residual variance oe.

3.3 TWO-STAGE SEMI PARAMETRIC ESTIMATION

In their article Geweke and Porter-Hudak discuss two so-called ’long memory’
models, that is the ’simple fractional Gaussian mnoise’ and the ’simple
integrated (or fractionally differenced) series’. They show the equivalence
of both types of models. These models are called ’long memory’ models because
the spectrum is infinite at a frequency (not necessarily zero). Both models
are generalized by postmultiplying their spectral densities with f,(}), the
spectral density of a ’short memory’ process with ARMA representation. A
two-stage procedure is proposed to model ’general integrated series: (1) An
estimator of the ’long memory’ parameter of fractional integration of the
process, d, is obtained as the coefficient in the linear regression of the
log periodogram of the process on that of a deterministic process. This
regression is based on the low-frequency ordinates of the periodogram and the
parameter d is an estimate of the slope of the spectral density. (2) Then an
ARMA representation of the transformed series is estimated at the second

stage.

Because the integration parameter d does not depend on the actual ARMA
representation parameters, the estimator @ is called semi-parametric. There
are however estimation procedures that give more efficient estimators than
the two-stage procedure, if the assumed model structure is right. These
methods are maximum likelihood methods, either applied in the time or in the
frequency domain. The estimator of d is no longer semi-parametric, because

one specifies the full model in a finite number of parameters.

The most important theorem in the Geweke and Porter-Hudak article is the

following one:
Theorem (Geweke and Porter — Hudak 1983, theorem 2, p. 227):

Suppose {y,} is a general integrated linear process, with d<O0. % Let L(Aj7)

30
As shown before, the assumption d<0 implies that we are dealing with a short

memory stationary process.
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denote the periodogram of {y,} at the harmonic frequencies \;r=27j/T in a
sample of size T. Let by r denote the ordinary least squares estimator of B,

in the regression equation
. 2
(3) In I(Ajr) = Bo + Brin{dsin®(A;7/2)} + ;7

where j=1,...,n.
Then there exists a function 2(T), which will have the properties
limyp,z(T) = 00 and limr.2(T)/T =0, such that

(%) if n=2(T), then plim b;=-d

(%) if lz'me(lnT)z/z(T)=0, then (‘b1+d)/{v¢'ir(b1)}%->DN(0,1)

where var(b,) is the usual least squares estimator of var(by). [

From the theorem it follows that there exists a function z(.), that depends
on the length T of the time-series, such that estimation of equation (3) for
n=2(T) periodogram ordinates gives a consistent estimator of d. Asymptotic

normality is assured, given an additional regularity condition.

From equation (2.3.3) it can be seen that the second regressor in equation
(3) is the log of the pseudo spectrum of a fractionally integrated series y;.
To come from equation (2.3.3) at equation (3), take logarithms of both sides
and add and subtract In{g,(1/2m)}, the spectrum of the ARMA part of the
process at zero. Evaluation at the harmonic frequencies A;r as defined in

the theorem gives
Infy(Ajr) = Ingy(1)—d.In{dsin®(A; 7/2)} +In{g,(exp{—iX; 1})/9,(1)}

When we restrict attention to the low-frequency ordinates near zero, say,
Ajr where j<K<T, the last term can be dropped as negligibleal. To make the
equation operational, add the log periodogram at ordinate A;r, say,

I,(Ajr), to both sides of the equation and rearrange to obtain

y(Aj

InI(Aj7) = lngy(1) - d.In{4sin® (A 1/2)} + I, (N 1)/ fy(Ai)}

This is equation (3). The residuals wu;y are reflected by the third term at
the right-hand side of the above equation. At the periodogram points where
gy(exp{—1iA; r})=g,(1) we are left with the spectrum of the long memory

component.

31
Geweke and Porter-Hudak (1983) propose to use the rule AT)=T%, where «=0.55
or «=0.6, based on Monte Carlo simulations.
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The two-stage semi-parametric spectral estimation procedure that is proposed

by Geweke and Porter-Hudak consists of the following two steps

(a) finding an estimate @ of the parameter d as a result of the regrgssion as
described in (3) and transforming the data by the filter (I—L)d in the
frequency domain;

(b) estimating the parameters of the remaining ARMA part of the process in
the usual way in the time domain.

The second-stage ARMA parameters are consistent, but their asymptotic

distribution is unknown.

Unit root tests

Diebold and Nerlove (1990) conclude that the potential usefulness of the
results of the first-stage d estimate as a unit-root test is obvious. First,
the first-stage d estimate is asymptotically normal when d=1, but also when
0<d<1. This differs sharply from the nonstandard distribution theory required
for least-squares estimates of unit-roots. Second, estimation and testing of
d proceeds independently of the (generally infinite dimensional) nuisance

-1

»parameter” B(z)=¢ (2)0(z), freeing the investigator from (frequently

dubious) assumptions regarding the form of the data-generating process.
3.4 THE CHOICE OF AN OPTIMAL MODEL

In this thesis, the choice of a criterion function to find an optimal model
depends on the structure of the estimated models. If the models are estimated
by the same estimation technique but the autoregressive and/or moving-average
polynomial orders p and ¢ are different, two optimal models are chosen: one
by the Akaike criterion (AIC) and one by the Schwartz criterion (SIC) which

read

AIC =2.Inf - 2. kJT
SIC =2.Inf - InT . kT

where k denotes the number of elements of the vector of parameters ¥. In
order to have a maximization problem as object in the empirical part of this
thesis we computed the negative values of AIC and SIC. According to Judge
(1985) AIC asymptotically overestimates the autoregressive order with
positive probability, given a finite order AR process; an estimator of the AR
order based on AIC will therefore not be consistent. SIC does give consistent

estimators in this case.
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If the AIC and SIC criteria lead to different optimal models, we subsequently
have to choose between these according to some device. If the optimal model
out of several models of the same type is not unique or the

models are not of the same type, the following forecasting device is used to

make a unique choice possible: the square root of the mean squared in-sample
forecast errors, i.e. the minimum sum of squared residuals. The model for
which this criterion is minimal is called optimal. This strategy amounts to
maximizing the R®. For example, the forecasting device is applied if we have
four different optimal models as a consequence of the four estimation

. . . . 32
techniques proposed in the previous sections.

32

Contrary to the procedure presented here, Sowell (1992a) applies the AIC and
SIC criteria functions to make a choice between fractional and non-fractional
ARMA and fractional ARMA models.
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4. MODELING ECONOMIC AND NON-ECONOMIC DATA

In this section we give an empirical illustration of the theory presented in
the sections before. In the section 4.1 we describe the maximum likelihood
computer codes that we applied for estimation of nonfractional and fractional
ARMA models. In both codes the input data is standardized initially: its
estimated mean is subtracted and the result is divided by its estimated
standard deviation. The value of the likelihood function is corrected for
this standardization afterwards. In section 4.2 the long- and short-memory
behavior of quarterly real US gross national product is investigated. In
section 4.3 we determine the long- and short memory characteristics of the
annual Trier oak tree ring widths series. The length of this series is large
as compared to most economic series and is therefore interesting for

long-memory studies.

4.1 THE MAXIMUM LIKELIHOOD COMPUTER CODE

To evaluate the exact likelihood function of a nonfractional ARMA model the
autocovariances have to be expressed in the parameters of the model. The

variance-autocovariance matrix Q can be calculated from ¥ by using the

Yule-Walker equations corresponding to stationary nonfractional ARMA models
as given by Box and Jenkins (1976) and McLeod (1975) (see Section 2.1.3),
given that y has a stationary ARMA representation. Given an estimate of the
vector of parameters ¥ we can substitute these values to obtain the
variance-autocovariance matrix Q corresponding to the estimated ARMA model.
Note that the application of the Yule-Walker equations in this way is
conceptually different from its application as an estimation technique: there

the parameters are unknown and the estimated autocovariances are substituted.

The exact maximum likelihood procedure applied to fractionally integrated
ARMA processes is presented in Sowell (1992b), based on Sowell (1987). A
recursion formula for the calculation of the autocovariance function of
processes with an autoregressive and/or moving-average component is obtained
which reduces the number of calculations substantially (see Section 2.3.2.1).
If there is no ARMA structure we simply employ the equation presented in

Section 2.3.1.1.
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The Vax/VMS Fortran computer code to evaluate the likelihood function of a
fractionally integrated ARMA process given an estimate of the vector of
parameters ¥ was obtained by the author of this thesis from Sowell on
request. This Vax/VMS Fortran computer code has been transformed to
Convex/Unix Fortran computer code and adjusted to allow for times series of
length 1200 instead of 500. Instead of the numerical maximization package
CQOPT which is available from R.E. Quandt and applied by Sowell (1992b), we
implemented the numerical minimization library called VARM (i.e. a variable
metric or quasi-Newton sub- routine), which is IBM/DOS Fortran computer code
originally and written by economists of the Econometric Department of the
Erasmus University Rotterdam (EUR). Furthermore, the IMSL routine DZPLRC and
the function DGAMMA are substituted by the Numerical Algorithms Group Limited
routines (NAG) CO2ABF and the function S14AAF, respectively. The NAG routines
G13ABF and G13ADF have been applied to find initial ARMA parameter estimates
along the Yule-Walker lines described by Box and Jenkins (1976) and McLeod
(1975).

In this thesis we adopt the iterative quasi-Newton Davidon-Fletcher-Powell
(DFP) updating formula of the vector of parameters (see Judge et al 1985 and

the references therein)
Wn+l =Y, - tPr¥n

where W, denotes the vector of parameters to be estimated, ¢, is the step
length and Py, is the step direction, all in iteration n. The direction
matrix P, is an approximation to the inverse Hessian matrix corresponding to
the likelihood funcion and 7, denotes the first derivative of the likelihood
function, both at ¥,. Thus P,,; =P,+M, where M, is the DFP correction matrix.
In this thesis ¥, is computed numerically. Asymptotic standard errors are
based on a finite difference computation of the Hessian matrix in !I/: which

gives the minimum of the likelihood function.

Step length t, is not determined by an exact line minimization method here.”?
Instead we use an interval enclosure method. As this does not guarantee a
positive definite P,,; even if P, is positive definite, an alternative
updating formula is the quasi-Newton Broyden-Fletcher-Goldfarb-Shano (BFGS)
formula which differs from the DFP updating formula with respect to M, (Van
der Hoek and Kolen 1986, p.188). It is possible to apply the BFGS updating

33
Exact line minimization means that in each iteration ¢, is selected such
that f(¢,+{,) is minimal for each step {p=-t,PnpTn given ¥y, Pp and g,
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formula given the Fortran code described above. However, in this thesis we

applied the DFP updating formula only.

Nonfractional as well as fractional ARMA models will be estimated by maximum
likelihood for the autoregressive polynomial orders p=0,1,2,3 and the
moving-average polynomial orders ¢=0,1,2,3. When there are no moving-average
parameters present, for each autoregressive order p (1) the Iinitial
autoregressive parameters are estimated as the solution of the Yule-Walker
equations, given an estimate of the first p autocorrelations; (2) the
variance of the error process is put equal to the estimated residual variance
of this autoregressive model; and (3) the fractional order of integration d

is set to 0.01;34

Then for each autoregressive order p the likelihood function of a model
containing 0, 1, 2 and 3 moving-average parameters is maximized by maximum
likelihood along the lines described above. The initial moving-average
parameters are set to the optimum parameter estimate of the previous model if

these estimates are present —— given the same p — and to -0.01 otherwise.

4.2 QUARTERLY REAL US GROSS NATIONAL PRODUCT

Sowell (1992a) modeled the first differences of the natural logarithm of
quarterly real US gross national product (hereafter: log GNP) from 1947:I to
1989:IV (172 data points, seasonally adjusted). As the autocorrelation
function of log GNP dies out slowly (see figure 4.1) modeling first
differences instead of levels of log GNP is proposed by Box and Jenkins
(1976). From the partial autocorrelation function an AR(1) model for the
first differences seems appropriate; an estimate of the first order
autoregressive coefficient will be near 0.4 (see the autocorrelation function

of the first differences).

However, at the frequencies close to zero the shape of the periodogram of
these first differences indicates overdifferentiation. Although comparison of

the plots of the levels and first differences of log GNP clearly reveals that

340ontx'ary to what is stated in Sowell (1992b, footnote 7) the original
Vax/VMS Fortran computer code does mnot allow for a zero parameter of
integration d. In this thesis we apply this code (albeit modified) to
estimate fractional ARMA models only as well and other computer code to
estimate stationary nonfractional ARMA models only.
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the levels are nonstationary whereas the latter are stationary,
overdifferentiation indicates that an order of differencing less than one is
already enough to make a nonstationary series stationary. We will illustrate

this later.

Augmented Dickey-Fuller tests

First we perform the ADF test by estimation of equation (2.2.4) including a
constant and deterministic linear trend of order one for log GNP, denoted
Iny, (i.e. y, denotes the levels of log GNP). Lagged differences are included
up to order 50 (p=>51). The five percent critical value is —3.45 (Fuller 1976,
table 8.5.2, 7., n=100).

For Iny, the ADF test statistic not significantly different from zero for all
lags up to 50, except at lag 11 (see figure 4.2). As the SIC criterion
indicates that only one lag of first differences is appropriate the
conclusion to be drawn is that the zero frequency unit root of order one
hypothesis for Iny, cannot be rejected given a five percent significance ADF
test. For the first differences of log GNP we observe from figure 4.2 that
the hypothesis of a unit root in first differences is rejected at a five
percent significance level, at least if we do not include lagged differences
of too high order. The zero frequency unit root therefore has multiplicity
one given these ADF tests results, i.e. log GNP is zero frequency integrated

of order one.

Model estimation

Given the results of the ADF tests we model first differences of log GNP,

denoted Alny,, by nonfractional ARMA models and estimate these for p=0,1,2,3
and ¢=0,1,2,3 by maximum likelihood. As we have seen before from the
periodogram of Alny, modeling this series by some fractional ARMA model seems
appropriate as well. The corresponding parameter of fractional integration
will be negative because of overdifferentiation. The fractional ARMA models
will be estimated by maximum likelihood as well. A fractional AR model for
Alny, will be estimated following Geweke and Porter-Hudak (1983) and a
nonfractional model for Alny, will be estimated by solving the Yule-Walker
equations. A mnonfractional model for the levels of log GNP will be estimated

by ordinary least squares.

Nonfractional ARMA models estimated by maximum likelihood

Fractional and nonfractional ARMA(p,q) models have been estimated by maximum
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likelihood for p=0,1,2,3 and ¢=0,1,2,3. As Sowell kindly provided the data
together with copies of the original computer output corresponding to the
estimated fractionally integrated ARMA(p,q) models, we are able to check our
results with respect to these models in a replicated experiment. The tables

4.1 and 4.3 presented below can be compared to tabel 1 in Sowell (1992a).

For each model we present in table 4.1 two times the log-likelihood value and
the Akaike (AIC) and Schwartz (SIC) information criterion values at the
optimal vector of parameters ¥ as defined in section 3.4. In the tables 4.2
and 4.4 we present the parameter estimates of the nonfractional and
fractional ARMA models, respectively. They can be compared to the tables 3
and 2 of Sowell (1992a), respectively.35

Table 4.1

2InL, AIC and SIC for sixteen nonfractional ARMA(p,q) models of the
standardized first differences of log quarterly real GNP (s.a.)

Number of MA parameters

Number of

AR parameters 0 1 2 3
1065.658 1083.242 1095.959 1097.987

0 1065.658 1081.242 1091.959 1091.987
1065.658 1078.100 1085.675 1082.562
1090.567 1092.068 1097.256 1098.003

1 1088.567 1088.068 1091.256 1090.003
1085.425 1081.784 1081.831 1077.436
1093.472 1094.964 1101.185 1102.362

2 1089.472 1088.964 1093.185 1092.362
1083.189 1079.539 1080.618 1076.654
1097.269 1098.936 1102.649 1102.674

3 1091.269 1090.936 1092.649 1090.674
1081.844 1078.370 1076.941 1071.824

From table 4.1 we observe that the AIC optimal model is ARMA(2,2), whereas
the SIC optimal model is ARMA(0,2). The parameter estimates for the sixteen
models are presented in table 4.2. The two optimal models for the
standardized first differences of log GNP are respectively (¢-statistics

between parentheses)

35
The autoregressive parameters in Sowell (1992a) are the negative of the

autoregressive parameters in this thesis.
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(1 — 0.60L + 0.49L%) Alny, = (1 — 0.30L + 0.64L%) ¢,
(- 3.91) (3.11) (- 2.39) (4.12)

and
Alny, = (1 + 0.30L + 0.27L%) ¢,
(4.07)  (3.88)
where the corresponding estimated residual variances are 9.3249%107° and
9.6284x10-5, respectively. A choice between the two models will be made on

the basis of their forecasting performances at the end of this section.

Table 4.2

Parameter estimates of sixteen nonfractional ARMA(p,q) models of the
standardized first differences of log quarterly real GNP (s.a.);
t — statistics between parentheses

Model ¢1 ¢2 ¢3 01 02 03
(0,1) 0.27
( 4.43)
(0,2) : 0.30 0.27
( 4.07) ( 3.88)
(0,3) 0.33 0.34 0.13
( 4.41) ( 3.97) ( 145)
(1,0) 0.37
( 5.18)
(1,1) 0.52 -0.17
( 411) ( -1.28)
1,2) 0.25 0.07 0.24
( 1.36) ( 0.41) ( 2.75)
(1,3) -0.04 0.37 0.35 0.14
( -0.13) ( 111) ( 277) ( 1.03)
(2,0) 0.32 0.13
( 4.23) ( 171)
(2,1) -0.07 0.29 0.39
( -0.24) ( 2.55) ( 1.34)
(2,2) 0.60 -0.49 -0.30 0.64
( 3.91) ( -3.11) ( -2.39) ( 4.12)
(2,3) 0.40 -0.53 -0.09 0.71 0.14
( 1.85) ( -3.35) ( -0.39) ( 6.42) ( 1.23)
(3,0) 0.34 0.18 -0.15
( 4.50) ( 2.26) ( -1.96)
(3,1) 0.83 0.02 -0.22 -0.50
( 2.29) ( 0.5) ( -2.89) ( -1.36)
(3,2) 0.60 ~0.67 0.14 -0.28 0.79
(  4.05) ( -3.75) ( 1.32) ( -2.28) ( 6.72)
(3,3) 0.68 -0.72 0.18 -0.36 0.82 -0.06
( 131) ( -2.04) ( 0.62) ( -0.69) (  4.00) ( -0.16)

From table 4.2 it appears that the parameter estimates of the nonfractional
ARMA(1,3) and ARMA(3,3) models differ significantly from those presented in
table 3 of Sowell (1992a): for the ARMA(1,3) model the parameters estimated
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by Sowell are respectively 0.93, —0.64, —0.05 and -0.30; for the ARMA(3,3)
model the estimated parameters are respectively 1.52, -0.97, 0.41, -1.26,
0.90 and —0.64. Comparison of the corresponding 2InL, AIC and SIC values
presented in table 4.1 and those presented in Sowell’s table 1 reveals that
the parameter estimates in our case are suboptimal. A possible explanation is
that our norm of gradient convergence criterion in VARM is less strict than
the one applied in GQOPT. Furthermore, different starting values could lead

to different ”optimal” parameter estimates for these two models.

If no starting values are supplied, maximum likelihood estimation of the
ARMA(1,3) model in Sun/Unix TSP leads to non-convergence and estimation of
the ARMA(3,3) model to parameter estimates close to ours.”® Moreover, given
the same starting values as in our Convex/Unix Fortran code — these are the
same as those applied in Sowell (1992a) —— the TSP parameter estimates
converged to our estimates in both cases. Furthermore, the parameter

estimates of Sowell (1992a) indicate common zero frequency unit roots.

From table 4.1 it is observed that addition of a third moving-average
parameter is redundant: for each autoregressive order the AIC and SIC values
decrease as compared to the models with two moving-average pa,rameters.37
Furthermore, the third moving-average parameter is not significantly

different from zero in any case as can be seen in table 4.2.

As the quarterly real US GNP data are seasonally adjusted it is advisable to
include a fourth moving-average parameter and check for statistical
sigmificance.38 Fixing the third moving-average parameter value at zero and
applying the same starting values strategy as described above only the
ARMA(1,4) model rtesulted in statistically significant parameter values.
However, the model estimated is non-stationary and these type of models are

excluded from the analysis in this thesis.

Fractional ARMA models estimated by maximum likelithood

From table 4.3 we observe that on the basis of AIC the fractionally

36 !
In Sun/Unix TSP the Gauss-Marquardt updating formula is applied.

37
The AIC value slightly increases in case of zero autoregressive order.

38
In the periodogram of log GNP the dip at the seasonal frequency w/2

indicates that the series has been seasonally adjusted. Seasonal
overdifferentiation is a reason for considering frequency w/2 integration of
fractional order. This will not be performed here.
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integrated ARMA(3,2) model is optimal, whereas it is an ARMA(1,0) model if

SIC is the chosen criterion.

Table 4.3

2inL, AIC and SIC for sixteen fractional ARMA(p,q) models of the
standardized first differences of log quarterly real GNP (s.a.)

Number of MA parameters

Number of

AR parameters 0 1 2 3
1083.436 1085.865 1096.057 1100.848
o 1081.436 1081.865 1090.057 1092.848
1078.294 1075.582 1080.632 1080.281
1095.024 1095.198 1100.911 1102.092
1 1091.024 1089.198 1092.911 1092.092
1084.741 1079.773 1080.345 1076.384
1095.468 1097.328 1101.748 1103.053
2 1089.468 1089.328 1091.748 1091.053
1080.043 1076.761 1076.039 1072.203
1100.406 1100.467 1105.695 1105.721
3 1092.406 1090.467 1093.695 1091.721
1079.839 1074.759 1074.845 1069.730

From table 4.4 it appears that the estimated parameters of the fractional
ARMA model are almost all identical to the corresponding ones in Sowell
(1992&).39 The standard deviations reveal more differences, though never
significant. For the optimal models d= -0.59 and d= -0.45, i.e. log quarterly
real US GNP is zero frequency integrated of order 0.41 or 0.55, respectively.
Thus, according to the former model log GNP has a long memory stationary

model representation whereas it is non-stationary according to the latter

model.
(1 — 1.18L + 0.93L% — 0.51L%) (1 - L)"°"®° Alny,
(- 3.01) (2.94) (- 2.60) (-1.73)
= (1 - 0.29L + 0.81L%) ¢,
(- 2.23) (7.20)
and
1 - 0.770) (1 - L) *® Ay, = ¢,
(- 6.44) (-2.86)
39

The autoregressive parameters in Sowell (1992a) are the negative of the

autoregressive parmaters in this thesis.
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where the estimates of the residual variance corresponding to the two
nonfractional ARMA optimal models are 9.0253x10™° and 9.6508x10”°,
respectively. A choice between the two models will be made on the basis of

their forecasting performances at the end of this section.

Table 4.4

Parameter estimates of sixteen fractional ARMA(p,q) models of the
standardized first differences of log quarterly real GNP (s.a.);
t - statistics between parentheses

Model d #1 oo b3 6 85 'S
(0,d,0) 0.29
( 3.98)
(0,d,1) 0.16 0.16
( 152) (  1.65)
(0,d,2) -0.03 0.33 0.28
( -0.32) ( 299 ( 3.67)
(0,d,3) -0.20 0.48 0.46 0.25
( -1.92) ( 466) ( 4700 ( 237)
(1,d,0) -0.45 0.77
( -2.86) ( 6.44)
(1,d,1) -0.38 0.74 -0.05
( -1.69) ( 5.52) ( -0.42)
(1,d,2) -0.41 0.65 0.06 0.23
( -142) ( 2.57) ( 052) ( 2.56)
(1,d,3) -0.33 0.37 0.26 0.39 0.17
( -1.73) ( 1.04) ( 117) ( 261) ( 117)
(2,4,0) -0.30 0.60 0.08
( -1.27) ( 244) ( 0.79)
(2,d,1) -0.29 0.07 0.44 0.52
( -1.54) ( 022 ( 207 ( 163)
(2,d,2) -0.25 0.78 -0.26 -0.23 0.37
( -0.79) ( 280) ( -L05) ( -0.93) ( 1.45)
(2,d,3) -0.13 0.41 -0.39 0.03 0.63 0.19
( -077)  ( 173)  ( -145) ( 012) ( 3.39) ( 1.51)
(3,d,0) -0.39 0.70 0.17 -0.17
( -152) ( 276) ( 165  ( -2.24)
(3,d,1) -0.34 0.75 0.11 -0.18 -0.11
( -111) ( 229 ( 045) ( -2.23) ( -0.25)
(3,d,2) -0.59 118 -0.93 0.51 -0.29 0.81
( -173)  ( 3.01) ( -294) ( 260) ( -2.23) ( 7.20)
(3,d,3) -0.52 1.16 -0.94 0.50 -0.34 0.83 -0.04

( -1.10) ( 3.04) ( -3.03) ( 233 ( -1.06) ( 5.96) ( -0.17)

In the literature (e.g. Sowell 1992; Diebold and Rudebusch 1989) the zero
frequency unit root of order one hypothesis given log GNP is sometimes
rejected and sometimes not rejected against the alternative of a
deterministic trend by an ADF unit root test. Given our ADF test results this

hypothesis could not be rejected. From the maximum likelihood results above
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we observe that a zero frequency unit root is present in the autoregressive
structure of log GNP, however not of integer order ome but of fractional
order (0.41 or 0.55). The ADF test for a zero frequency unit root of integer
order one therefore restricts the set of possible models for log GNP and
seems to be a test for non-stationarity versus stationarity rather than a

unit root test.

The modeling strategy of Sowell (1992a) clearly leads to the incorrect
impression that the mnonfractional ARMA(0,2) model is an important
nonfractional alternative to the fractional ARMA(3, —0.59,2) model.’ From the
plot of the spectral densities of the estimated models over the periodogram
for the first differences of log GNP it appears that the nonfractional
ARMA(2,2) model gives a better description of the frequency domain behavior
than the model advocated by Sowell (see figure 4.3).41 Campbell and Mankiw
(1987) selected this model out of a set of nonfractional ARMA models. This
finding gives support to our proposition that application of the AIC or SIC
criterion to find one model out of a set of nonfractional and fractional
alternatives is a strategy not to be pursued. It is advisable to apply the
criteria to the set of nonfractional alternatives only to find an AIC optimal
and an SIC optimal model and do the same for a set of fractional alternatives
only. A choice between the models can be made by studying the forecasting

performances of the set of optimal models.*

The second stage of the GPH (1983) estimation procedure

The GPH estimation of fractional ARMA models procedure consists of two
stages: at the first stage the long memory parameter d is estimated by a log
periodogram regression (equation (3.3)), and at the second stage the short
memory autoregressive parameters are estimated. In order to get a clear
picture of the meaning of fractional integration in general and the GPH
methodology in particular we first discuss the GPH results given the
fractional ARMA(1, —0.45,0) model for Alny (this model is SIC optimal when

estimated by maximum likelihood). Thus in this discussion estimation of the

40Sowell chooses an optimal model out of mnonfractional and fractional models
according to some criterium (AICSIC). In this thesis however we choose an
optimal nonfractional model and an optimal fractional model according to some
criterium (AIC,SIC).

41
The shape of the periodogram of Ainy; at the higher frequencies differs from

the one depicted in Sowell (1992a, figures 2, 3 and 11).

42
Sowell (1992a) remarks the alternative of a nonfractional ARMA model at the
end of the discussion omnly.
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Figure 4.3
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parameter of fractional integration at the first stage of the GPH procedure
is skipped. The GPH estimation results when performing the first stage log

periodogram regression will be discussed hereafter.

Given d = -0.45, we can compute the mean-corrected series

-0.45

(1) u = (1-L) Alny,

by premultiplication of Alny, in the frequency domain. In figure 4.4 we
plotted the series u, against Alny, where both series run from 1947:I to

1989:1V (171 data points).

The negative sign of the parameter of fractional integration indicates that
in order to attain stationarity the series Iny, has been overdifferenced when
considering Alny,. As u~I(0) we observe that Iny is already stationary and
without long memory when corrected for an integration order of 0.55; it is
overdifferenced when corrected for an integration order of 1.00. Notice that
u,=(1-L)° *’Iny,.
Yule-Walker estimation of the autoregressive structure of u at the second
stage of the GPH procedure gives the following model for the mean-corrected
series u;:

(2) (1 — 0.77L) u, = &,

(-15.70)
where the first order autoregressive parameter estimate appears to be equal

to the corresponding maximum likelihood estimate (see table 4.4).

Predictions obtained by time domain transforms

In order to construct forecasts of Alny, and thereby of Iny;, we can perform
convolution of the short-memory autoregressive polynomial (1-0.77L) and the
long memory autoregressive polynomial (an alternative device will be
discussed later). The latter polynomial is approximated by its infinite order
autoregressive representation, truncated after lag 50. In figure 4.5 we have
illustrated the convolution of these autoregressive polynomials. We have
depicted the short and long memory autoregressive coefficients and the
coefficients resulting after convolution. Furthermore we have plotted the
implied short and long memory estimated spectral densities and the spectral
density corresponding to the convoluted polynomial, each estimated density
plotted against the periodogram of Alny, It is clear that the shape of the
periodogram at the higher frequencies is approximated best by the short

memory spectral density whereas the lower frequency behavior is captured best
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Figure 4.5 .
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by the long memory spectral density.

In figure 4.6 the one-step ahead predictions Alny,; are plotted against
Alny,, given the bases 1959:I up to 1989%:IIl. From the histogram of the
one-step ahead prediction errors in figure 4.7 (122 data points) we observe a
slight skewness to the left with an extreme prediction error of -0.06 in
1982:III. The square root of the mean squared one-step ahead in-sample
prediction errors of 0.0177 can be compared to 0.0097, ie. the maximum
likelihood estimate of the standard deviation of the fractional
ARMA(1, —0.45,0) model. Notice however that the former figure is based on 122
data points whereas the latter is based on 172 data points. Compare the

results with the predictions obtained by frequency domain transforms.

One-step ahead predictions of Iny, are obtained by integration of the

forecasts Alny, ,, thereby making use of
(3) Iny,; = Inyg+Alny;,

The one-step ahead in-sample predictions Iny,; are plotted against Iny, in
- figure 4.8, given the bases 1959%:II up to 1989:IIl. By substitution of the
identity Iny,=Iny;,;—Alny;,; in (3) it can be derived that

Alnyg - Alny, ;= Iy —nyg

i.e. the one-step ahead prediction errors for the first differences of log
GNP equal those of the levels. For the histogram of the one-step ahead
prediction errors of Iny, we therefore refer to the one corresponding to
Alny,. Furthermore, the square root of the mean squared one-step ahead
in-sample prediction errors of 0.0177 for Iny, can thus be compared to the
maximum likelihood estimate of the standard deviation of the fractional

ARMA(1, —0.45,0) model for Alny,.

In general h-step ahead predictions of Iny, are obtained by making use of the
identity Iny,p=1Iny;p_+Alny;p. Given the basis 1959:11 the predictions of
log GNP for horizons 1 up to 120 are plotted against the realizations in

figure 4.9.

Predictions obtained by frequency domain transforms
An alternative device to generate one-step ahead predictions of Alny, given
the model in equation (2) is the following. One-step ahead predictions of u;

can be derived from model (2) as
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Realizations and one-step ahead predictions of first differences

0.06

T ] >
7
=
>
\\\\\\\\\\\\\ 5
||||| -
— Q
T e nm
e &
lllllllllllllllllll p
. '
= L]
\..l 1
JE—- '
lllllll L}
===2 [
r\l '
IAHHHHHHHHMI
:::::::: =
TTnIee.
s
B —
e
\\‘\l.ll.\l
=
\\.-\ll.l
T
~_Sn
€
=
zn\nx:::\::
L ! : _ _
<t N e S S
S < S =
> .
= pac S lan
7 ]

1955 1960 1965 1970 1975 1980 1985 1990
81

1950

-O.O]fS9 45



Figure 4.7

Histogram of one-step ahead prediction errors of first differences
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Figure 4.8
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(4) '&t = 0.77 ut—l

0.45
in the

for t=2,...,171. Premultiplication of @, by the filter (1-L)
frequency domain gives one-step ahead predictions of Alny,, say Alny, Notice
the difference in the generation of predictions as described before: they
were derived after convolution of the short- and long-memory autoregressive
polynomials as given in equations (1) and (2). The histogram of the one-step
ahead predictions of Alny, derived in this way is presented in figure 4.10.
The square root of the mean squared in-sample predictions errors based on 170
data-points is 0.0110; based on the period after 1959:II the corresponding

figure is 0.0108.

Fractional AR models estimated according to GPH (1983)

At the first stage of the GPH estimation procedure the number of periodogram
ordinates n to be used in the log periodogram regression (3.3) is determined
by the rule n=2z(T) where 2(T)=T% as proposed by Geweke and Porter-Hudak
(1983) where 0 <<l has to be chosen. Although ov=0.55 or oc=0.6 is proposed by
Geweke and Porter-Hudak (1983), in the literature usually «=0.5 is taken
(e.g. Diebold and Rudebusch 1989). If the process under consideration is
fractional noise Hassler (1993a, 1993b) suggests that the log periodogram
regression should be run over the whole range of harmonic frequencies. We
estimated the short-memory component of the fractional models for
autoregressive orders of one up to 50. According to the SIC criterion an
optimal short-memory autoregressive order for the mean-corrected series Alny,

is determined.

The first differences of log GNP reveal short-memory behavior. The log
periodogram regression has been run over the first n=13 (x=0.5), n=16
(x=0.55) and n=21 (x=0.6) nonzero periodogram ordinates.”’ From the first
panel of table 4.5 we conclude that the estimates of the parameter of
fractional integration for n=13,16,21 are not significantly different from

zero. This is in sharp contrast with the maximum likelihood results.

3
As application of the rule n=zT) often leads to a real number n we choose n

as the entier of z(T).
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Table 4.5

Parameter estimates of fractional AR(p) models of the
first differences of log quarterly real GNP (s.a.);
t —statistics between parentheses

periodogram regression AR(p) parameters
o n constant d P ?1 SIC value
0.5 13 -10.79 0.06 1 0.31 9.181
(-13.81) (0.25) (4.29)
0.55 16 -10.76 0.05 1 0.32 9.181
(-18.77) (0.28) (4.38)
0.6 21 -10.27 -0.07 1 0.44 9.193
(-26.56) (-0.53) (6.44)
6 -9.12 -0.29 ' 1 0.65 9.211
(-27.50) (-4.02) (11.07)
7 -9.83 -0.16 1 0.52 9.200
(~17.64) (-1.22) (8.02)
8 -9.26 -0.27 1 0.63 9.209
(~15.61) (-1.89) (10.50)

Note: In the first two columns o« and n according to the rule n=Toc are
presented, where 7T=171. In the third and fourth column the estimated constant
of the log periodogram regression and the estimated parameter of fractional
integration are shown. The optimal order of the short memory autoregressive
model, the corresponding estimate of the autoregressive parameter(s) and the
corresponding SIC value are depicted in the columns five, six and seven,

respectively.

The periodogram of Alny, increases up to n=8 and decreases afterwards. As the
increment has to be described by the long-memory part of the fractional AR
model it is advisable to perform the log periodogram regression for n=8. The
estimation results are presented in the second panel of table 4.5, together
with those for n=6 and n=7 for comparison. The estimated parameter of
integration d= —0.27 for n=8 is almost significantly different from zero and
the SIC value is higher than the ones corresponding to the estimates
discussed before. For n=6 the estimate d= -0.29 is significantly different
from zero and corresponds to the overall highest SIC value reported in this
table. The model for the mean corrected series Alny, reads

-0.29

(5) (1 - 0.65L) (1 - L)
(-11.07) (-4.02)

Alnyt = Et

where the estimated variance equals 17.5652x10"°. For n="7 the parameter of

integration is not significantly different from zero.
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The rule z(T):TO‘, where «e{0.5,0.55,0.6}, does lead to a serious bias in the
parameter of fractional integration and it is therefore not advisable to
apply this rule in case of fractional AR modeling of log GNP. In figure 4.11
we have plotted the log periodogram of the first differences of log GNP, the
deterministic regressor ln{4sin2(/\j’T/2)} and the regressor multiplied by the
maximum likelihood estimate d = —0.45. It is clear that the latter gives a good
description only of the first few low harmonic frequencies. The periodogram
at the higher frequencies causes the upward bias in the estimate of the
long-run parameter of integration, as these are best described given a

positive order of fractional integration.

The bias in d is caused by the presence of strong short memory autoregressive
correlation of the first order as can be seen from equation (2). In a Monte
Carlo experiment Sowell (1992a) estimates the parameter d by performing the
log periodogram regression for the first % nonzero periodogram ordinates
where k was varied between 3 and 32. One thousand samples were simulated from
the fractional ARIMA(3,d,2) model as estimated by maximum likelihood for the
first differences of log GNP. The means of the estimated parameters d all
show upward bias from the population value which monotonically increases with
the number of ordinates used. Hassler (1993b) derives an analytical
representation of the bias in the estimate of the parameter d which depends
on the coefficients of the ARMA polynomials only. Indeed, for first order
autoregressive processes with first order autocorrelation of 0.8 extremely

biased estimators are obtained, the bias growing with n.

A Yule-Walker nonfractional AR model
To apply the Yule-Walker estimation procedure stationarity is necessary. As
we want to estimate a nonfractional AR model and given de ADF test results
the relevant series should be Alny,. We estimated nonfractional AR models for
an autoregressive order of one up to 50. According to the SIC criterion the
following Yule-Walker estimated model for the mean-corrected series Alny, is
optimal
(6) (1 - 0.37L) Alny, = &

(- 5.18)
where the estimate of the first order autoregressive parameter equals the
corresponding maximum likelihood estimate (see table 4.2). The estimated

variance equals 10.0018x107°.
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In the discussion of the maximum likelihood estimation of fractional ARMA
models we noticed that the generation of one-step ahead predictions of Alny,
given the model (2) could be done in two ways: first convolute the short- and
long-memory autoregressive polynomials and then compute the forecasts of
Alny,, or first generate predictions of the long-memory series u; and then

%4 in  the frequency

premultiplicate these predictions by the filter (1-L)
domain (see equation (4)). It is the latter procedure that makes an

interesting comparison possible.

Given model (6) it is possible to derive pfedictions of Alny, as
Alﬁyt = 0.37 Alnyt_l

for t=2,...,171. If model (6) as well as model (2) give a good description of
the underlying process these one-step ahead prediction errors should be
similar in distribution as those computed according via the frequency domain.
From the histogram in figure 4.12 we observe that this is indeed the case
(compare figure 4.10). The square root of the mean squared in-sample
predictions errors based on 170 data-points is 0.0112; based on the period

after 1959:II the corresponding figure is 0.0106.

An ordinary least squares nonfractional AR model
In order to estimate a mnonfractional AR model by ordinary least squares
stationarity of the series to be modeled is not necessary. According to the
SIC criterion the following ordinary least squares estimated model for the
Iny, is op'cimal44
(7) (1 - 1.36L + 0.36L%) Iny, = 0.02 + &,

(-18.90) (5.06) (1.43)
where the estimated variance equals 10.1026x10"°. The presence of a zero

frequency unit root is clearly revealed. Rewriting this model we obtain
(1 bt 0.36 L) Alnyt = 0.02+ €t

which is very similar to the Yule-Walker estimated model (4) for the mean-

corrected series Alny;.

44
The series lny; has not been corrected for its mean.
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The choice of an optimal model

From table 4.6 we observe that the nonfractional models are to be preferred
in terms of in-sample forecasting performance. Note however that there are
only 3 horizon 120 predictions, so that conclusions should be drawn

carefully. The ADF test result is in accordance with the optimal model

choices.
Table 4.6
Square roots of mean squared in—sample prediction errors
for horizons 1, 5, 20, 40, 60 and 120 corresponding to
log quarterly real GNP (s.a.)
horizons

estimation
type of model method 1 5 20 40 60 120
(models of the levels)
nonfractional AR(2) OLS 0.009  0.028  0.047  0.043  0.045  0.043
(models of the first differences)
nonfractional ARMA(2,2) ML 0.012  0.031  0.053  0.064  0.079  0.028
nonfractional ARMA(0,2) ML 0.010 0.029 0.052 0.066 0.081 0.028
fractional ARMA(3,-0.59,2) ML - - - - - -
fractional ARMA(1,-0.45,0) ML 0.018  0.038  0.054  0.066  0.068  0.039
fractional AR(1,-0.29) GPH 0.012 0.035 0.053  0.065 0.071  0.039
nonfractional AR(1) Yw 0.009 0.029 0.053  0.069  0.084  0.033

Cumulative impulse responses

From figure 4.13 we see that the cumulative impulse responses are very close
for all models. In the longer tun the shock persistence corresponding to the
the fractional models is much less than that corresponding to the
nonfractional models. Given the rather small number of observations available

it should be noted that standard errors will be high.
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4.3 ANNUAL TRIER OAK TREE RING WIDTHS

In Lamb (1977, table v21) a series of 1143 data points is tabulated. The data
points reflect yearly Trier oak tree ring widths from the west of the Rhine,
near Trier and cover the years 822-1964. The data were gathered by felling
the oaks and measuring the thickness of the rings, the youngest ring being
the one nearest to the bark. Generally in each year there have been between
10 and 36 sample measurements; in the years before 910 there have been only
1-9 measurements and only 4-8 in the period between 1060 and 1129. The unit
of measurement is not reported in Lamb (1977) but may well be 0.1lmm (see also

Steyn 1992).

The ring widhts are the subject of dendroclimatology as they provide indirect
evidence of weather conditions. The nature of the weather dependence of this
series has not been investigated at Lamb’s (1977) time of writing. Decades
with mild winters and warm summers which also gave plenty of rain seem to
have produced the most growth; colder or drier summers or winters probably
restricted growth. The ring widths seem to register the effects of more than

one year. The Trier oak tree ring widths are plotted in figure 4.14.

As the emphasis in this thesis is on long memory behavior of stochastic
processes a series of this length should be considered as very welcome, given
economic series which are often of rather short length and are therefore
rather inadequate for this purpose. From the periodogram of the Trier oak
tree ring widths we observe that long memory behavior is present in this
series. The correponding autocorrelation function dies out slowly which is an

indication of the presence of a zero frequency unit root as well.

From the figures corresponding to the first differences a surprising
phenomenon is manifest. While the levels of the series are primarily
dominated by the low frequency behavior, the first differences are primarily
dominated by the behavior at the high frequencies. Furthermore, from the
estimated autocorrelation function and partial autocorrelation function an
appropriate model for the first differences seems to be an MA(1) model with
first order autocorrelation of about -0.5. However, the corresponding first
order moving-average coefficient then should be about -1, which is an

indication of overdifferentiation as well.

Thus the levels of the series are non-stationary whereas taking first
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differences is just too much. This dilemma very strongly indicates the
necessity of allowing for fractional integration when modeling this series.
Fractional integration seems to be tailor-made for description of the

behavior of the Trier oak tree ring widths series.

Augmented Dickey-Fuller tests

The ADF test is performed by estimation of equation (2.2.4) for the Trier oak
tree ring widths, denoted v; including a constant, a deterministic linear
trend of order one and lagged differences of y, up to order 50 (p=>51). The
five percent critical value is —3.41 (Fuller 1976, table 8.5.2, 7., n=00). For
both vy, and Ay, the ADF test statistic is significantly different from zero
for all lags up to 50: the zero frequency integer unit root hypothesis is
rejected against a fractional unit root less than one at a five percent

significance level in both cases (see figure 4.15).

Model estimation

Given the results of the ADF tests we model levels of the Trier oak tree ring
widths by a nonfractional and a fractional ARMA model first. Estimation of
these models will be performed by maximum likelihood. A fractional AR model
for y, will also be estimated following Geweke and Porter-Hudak (1983). A
nonfractional AR model for y, will once be estimated by solving the

Yule-Walker equations and once by ordinary least squares.

Nonfractional ARMA models estimated by maximum likelthood

Estimation of nonfractional ARMA models for the levels of the Trier oak tree
ring widths indicate the presence of a zero frequency autoregressive unit
root of order one.”’ Therefore we present in tables 4.7 and 4.8 the results
corresponding to the first differences of the Trier series. The optimal
model, both according to AIC and SIC, is the nonfractional ARMA(2,1) model

(1 - 0.24L - 0.20L%) Ay, = (1 - 0.92L) &,
(- 7.09)(- 6.16) (-56.51)

where the corresponding estimated residual variance is 418.0292.

45
These results are mnot reported here. They can be obtained from the author on

request.
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Table 4.7

2lnL, AIC and SIC for sixteen nonfractional ARMA(p,q) models of the
standardized first differences of the Trier oak tree ring widths

Number of MA parameters

Number of

AR parameters 0 1 2 3
-10578.025 -10183.825 -10177.450 -10140.641
0 -10578.025 -10185.825 -10181.450 ~10146.641
-~10578.025 -10190.865 -10191.531 -10161.763
-10285.213 -10170.637 -10145.002 -10134.484
1 -10287.213 -10174.637 ~10151.002 -10142.484
-10292.254 -10184.718 -10166.124 -10162.646
-10246.630 -10134.488 -10134.481 -10134.079
2 -10250.630 -10140.488 -10142.481 -10144.079
-10260.711 -10155.610 -10162.643 -10169.281
-10226.841 -10134.479 -10134.131 -10132.912
3 -10232.841 -10142.479 -10144.131 -10144.912
-10247.962 -10162.641 -10169.334 -10175.155
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Table 4.8

Parameter estimates of sixteen nonfractional ARMA(p,q) models of the

standardized first differences of the Trier oak tree ring widths;
t — statistics between parentheses

Model 9 2 o3 6, 9, 03
(0,1) -0.69
(-23.43)
(0,2) -0.67 -0.08
(-23.98) ( -2.56)
(0,3) -0.68 0.05 -0.19
(-23.48) ( 1.22) -6.25)
(1,0) -0.48
(-18.28)
1,1) 0.20 -0.84
( 4.36) (~26.93)
(1,2) 0.72 -1.37 0.41
( 11.18) (-18.72) ( 6.58)
1,3) 0.42 -1.09 0.32 -0.14
( 2.64) ( -6.91) ( 3.04) -3.36)
(2,0) -0.56 -0.18
(-19.33) -6.26)
2,1 0.24 0.20 -0.92
( 7.09) 6.16) (~56.51)
(2,2) 0.26 0.20 -0.93 0.01
( 1.74) 4.08) ( -6.26) ( 0.09)
(2,3) 0.32 0.10 -1.00 0.16 -0.08
( 1.69) 0.63) ( -5.23) ( 0.61) -0.66)
(3,0) -0.59 -0.26 -0.13
(-19.98) -71.70)  ( -4.47)
(3,1) 0.24 0.20 0.00 -0.92
( 7.10) 6.16) (  0.10) (-52.70)
(3,2) -0.35 0.35 0.14 -0.33 -0.55
( -0.72) 2.78) ( 1.40) ( -0.67) ( -1.23)
(3,3) -0.24 0.10 0.15 -0.43 -0.21 -0.20
( -0.64) 0.45) ( 172) ( -1.15) ( -0.54) -1.23)
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Fractional ARMA models estimated by maximum likelthood

The tables 4.9 and 4.10 include the results of maximum likelihood estimation
of fractional ARMA models for the levels of the Trier series, ie. y;.
According to the AIC criterion a fractional ARMA(2,0.45,0) model is optimal,
whereas the SIC criterion results in a fractional ARMA(1,0.49,0) model. From
the parameters of integration we conclude that the Trier series has a zero
frequency unit root of fractional order about 0.47 which implies stationarity
and invertibility. This is in accordance with the results of the ADF test.
Once again the ADF test seems to be a test for non-stationarity versus
stationarity instead of a unit root test as a zero frequency unit root is
present. Integer differencing the series y, once therefore leads to serious
overdifferencing as we have already seen from the periodogram of Ay
However, modeling vy, without any correction leaves too much long-memory
behavior in this series and will be not justified as well (see estimation of

nonfractional ARMA models for y,).

Table 4.9

2inL, AIC and SIC for sixteen fractional ARMA(p,q) models of the
standardized Trier oak tree ring widths

Number of MA parameters

Number of

AR parameters 0 1 2 3
-10170.996 -10156.470 -10147.821 -10146.455

0 ~10172.996 -10160.470 -10153.821 -10154.455
-10178.037 -10170.553 -10168.945 -10174.621
-10152.494 -10148.842 -10147.095 -10146.122

1 -10156.494 ~10154.842 -10155.095 -10156.122
-10166.577 -10169.966 -10175.260 -10181.329
~10147.638 -10147.638 -10144.905 -10143.158

2 -10153.638 ~10155.638 -10154.905 -10155.158
-10168.763 -10175.804 -10180.112 -10185.406
-10147.638 -10147.355 -10142.892 -10142.827

3 -10155.638 -10157.355 -10154.892 -10156.827
-10175.804 -10182.562 -10185.140 -10192.117
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Table 4.10

Parameter estimates of sixteen fractional ARMA(p,q) models of the
standardized Trier oak tree ring widths;
t — statistics between parentheses

Model d #1 b ¢3 8 6, 05
(0,d,0) 0.40
( 20.15)
(0,d,1) 0.48 -0.15
( 23.15) ( -4.27)
(0,d,2) 0.44 -0.11 0.10
( 1L.67) ( -2.26) ( 2.89)
(0,d,3) 0.46 -0.14 0.10 -0.04
( 12.25) ( -2.78) ( 292) ( -119)
(1,d,0) 0.49 -0.17
( 28.20) ( -5.08)
(1,d,1) 0.47 -0.45 0.29
( 2015)  ( -3.46) ( 2.04)
(1,4,2) 0.45 -0.20 0.08 0.08
( 12.13) ( -0.90) ( 037) ( 153)
(1,d,3) 0.47 0.26 -0.40 0.13 -0.07
( 13.00) ( 0.60) ( -0.91) ( 1.99) ( -1.40)
(2,d4,0) 0.45 -0.13 0.08
( 12.39) ( -2.64) ( 2.08)
(2,d,1) 0.45 -0.13 0.08 0.00
( 11.97) ( -0.45) ( 1.33) ( 0.01)
(2,4,2) 0.45 -0.58 -0.38 0.47 0.42
( 13.55) ( -1.89) ( -2.20) ( 163) (239
(2,4,3) 0.47 -0.27 -0.59 0.12 0.64 -0.10
( 15.60)  ( -113)  ( -3.06) ( o051 ( 382 ( -179)
(3,4,0) 0.45 -0.13 0.08 -0.00
( 11.70) ( -2.60) ( 1.99) ( -0.01)
(3,d,1) 0.47 0.48 0.15 -0.06 -0.62
( 11.83) ( 0.91) ( 187) ( -1.41) ( -117)
(3,d,2) 0.47 -0.41 -0.69 -0.10 0.26 0.73
( 16.55) ( -1.82) ( -3.61) ( -1.89) ( 120) ( 4.60)
(3,d,3) 0.46 -0.58 -0.80 -0.20 0.44 0.82 0.10

( 14.69) ( -0.82) ( -1.60) ( -0.50) ( o.61) (  1.96) ( 0.25)

The AIC and SIC optimal models are respectively

(1 + 0.13L - 0.08L%) (1 - L) ** 5, = ¢
(2.64)( - 2.08) (12.39)
and
1+ 017L) 1 - L) * y, = &
(5.08) (28.20)

where the estimates of the Ttesidual variance corresponding to the
nonfractional ARMA optimal models are 418.92 and 420.25, respectively. It
should be noted that there is another model with an AIC value slightly less
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than that of the fractional ARMA(2,0.45,0) model: the fractional
ARMA(0,0.44,2) model
1-0)%%*y, = @1 - 01 + 0.10L%) ¢,
(11.67) (- 2.26) (2.89)
where the estimate of the residual variance is 419.10. A choice between the

three models will be made on the basis of their forecasting performances.

Table 4.11

2lnL, AIC and SIC for sixteen fractional ARMA(p,q) models of the
standardized first differences of the Trier oak tree ring widths

Number of MA parameters

Number of

AR parameters 1] 1 2 3
-10161.763 -10144.171 -10137.960 -10135.418
0 -10163.763 -10148.171 -10143.960 -10143.418
-10168.804 -10158.252 -10159.082 -10163.580
-10139.821 -10137.684 -10136.934 -10132.496
1 -10143.821 -10143.684 -10144.934 -10142.496
-10153.902 -10158.806 -10165.096 -10167.699
-10137.309 -10137.280 ~10134.820 -10131.936
2 -10143.309 -10145.280 -10144.820 -10143.936
-10158.430 -10165.442 ~10170.022 -10174.179
-10137.223 -10132.982 ~-10130.396 -10129.787
3 -10145.223 -10142.982 -10142.396 -10143.787
-10165.385 -10168.184 -10172.639 -10179.071

For completeness we present the maximum likelihood results for the first
differences of the Trier series in case of fractional ARMA models as well.
From table 4.11 the fractional ARMA(3,-0.32,2) model appears to be AIC
optimal whereas the fractional ARMA(1, —0.48,0) model is optimal according to
SIC. From table 4.12 the models are respectively

(1 - 149 + 0.31L% + 0.22L%) (1 - [)™"°*
(- 9.40) (1.98) (6.00) (-2.94)

(1 - 1.86L + 0.88L%) ¢,
(-25.06) (12.58)

Ay, =

and

1+ 0.21L) (1 - L)% Ay, = ¢
(4.98) (-14.11)

where the estimated residual variances are 416.42 and 419.65, respectively.

Again there is another model with almost the same AIC value as the optimal
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one, i.e. the fractional ARMA(1, -0.29,3) which reads

(1 - 0.57L) (1 - L)°*° Ay, = (1 - 0.96L + 0.25L> - 0.12L°) e,
(- 4.07) (-1.76) (- 4.76) (2.82) (- 3.01)
where the estimated residual variance is 417.15. A choice between the models
will be made on the basis of their forecasting performances. It should be
noted that the fractional orders of integration indicate that the levels of
the Trier series may be non-stationary as the confidence intervals of the
fractional ARMA(1, —0.48,0) model and the fractional ARMA(1, -0.29,3) contain

d=0.5 as a possible estimate of the parameter of integration.

Table 4.12

Parameter estimates of sixteen fractional ARMA(p,q) models of the
standardized first differences of the Trier oak tree ring widths;
t — statistics between parentheses

Model d d)]_ ¢2 ¢3 01 92 93
(0,d,0) -0.59
(-28.92)
(0,d,1) -0.47 -0.19
(-11.31) ( -3.82)
(0,d,2) -0.54 -0.13 0.09
(~12.34) ( -2.37) ( 2.54)
0,d,3) -0.49 ~0.19 0.08 -0.06
( -7.34) ( -259) ( 216)  ( -1.55)
1,d,0) -0.48 -0.21
(-14.11) ( -4.98)
(1,d,1) -0.50 -0.41 0.24
(-14.73) ( -3.10) ( 1.56)
(1,d,2) -0.53 -0.24 0.10 0.06
(-11.76) ( -1.06) ( 047) ( 0.99)
(1,4,3) -0.29 0.57 -0.96 0.25 -0.12
( -1.76)  ( 4.07) ( -476) ( 2.82) ( -3.01)
(2,d,0) -0.52 -0.15 0.06
(-11.73) ( -2.83) ( 157) ,
(2,d,1) -0.52 -0.21 0.05 0.05
(-11.49) ( -0.64) ( 0.74) ( 017)
(2,d,2) -0.54 -0.67 -0.38 0.54 0.39
(-13.72) ( -1.69) ( -2.20) ( 1.45) ( 2.36)
(2,d,3) -0.49 -0.21 -0.60 0.03 0.64 -0.14
( -9.99) ( -0.80) ( -3.23) ( 0.10) ( 410) ( -212)
(3,d,0) -0.52 -0.16 0.06 -0.01
(-10.42) ( -2.76) ( 130) ( -0.29)
(3,d,1) -0.24 0.43 0.21 -0.03 -0.86
( -1.37) ( 3.24) ( 5.51) ( -0.66) (-13.45)
(3,d,2) -0.32 1.49 -0.31 -0.22 -1.86 0.88
( -2.94) ( 9.40) ( -1.98) ( -6.00) (~25.06) { 12.58)
(3,d,3) -0.38 1.44 -0.15 -0.31 -1.74 0.62 0.13

( -3.37) ( 9.00) ( -0.64) ( -2.54) ( -9.97) ( 186 ( 0.80)
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Fractional AR models estimated according to GPH (1983)

In table 4.13 we have tabulated the results from the application of the
Geweke and Porter-Hudak (1983) procedure to the levels of the Trier series,
i.e. vy, At the first stage of the GPH estimation procedure the number of
periodogram ordinates n to be used in the log periodogram regression (3.3) is
determined by the rule n=2(T) where z(T)=T°‘ as proposed by Geweke and
Porter-Hudak (1983) where 0<oa<l has to be chosen. In table 4.13 results are
presented for n=33 (o«=0.5), n=48 (ox=0.55) and n =68 (cov=0.6). As compared to
the parameter of fractional integration as estimated by maximum likelihood
before there is an upward bias in the GPH estimator of this parameter d.
However, the bias is less than the bias reported for the log GNP series. The
reason for this is the much smaller short memory autoregressive component of

the Trier series.

According to the SIC criterion an optimal short-memory autoregressive order
for the mean-corrected series y, is determined. The optimal order turned out
to be one for ac= 0.5 or o =0. 55 and two for o =0.6. The short-memory behavior of
the estimated autoregressive models is not too high. According to the SIC

values the fractional AR(2,0.52) model is superior:

1+ 0.18L - 0.05L%) (1 - L)"*°% y, = &
(4.35)( - 1.13) (5.72)
Table 4.13

Parameter estimates of fractional AR(p) models of the
Trier oak tree ring widths;
t —statistics between parentheses

periodogram regression AR(p) parameters

[+ n constant d P o} o2 SIC value

0.5 33 2.62 0.62 1 -0.27 -6.059
(3.47) (4.51) (-9.55)

0.55 48 2.66 0.61 1 -0.27 -6.058
(4.94) (5.56) (-9.41)

0.6 68 3.23 0.52 2 -0.18 0.05 ~6.055
(8.33) (5.72) (-4.35)  (1.13)

Note: In the first two columms o and n according to the rule n=Ta are
presented, where  T=1143. In the  third and fourth columm the  estimated
comstant of the log periodogram regression and the estimated parameter of
fractional integration are shown. The optimal order of the short memory
autoregressive model, the corresponding estimate of the autoregressive
parameter(s) and the corresponding SIC value are depicted in the columns

five, six and seven, respectively.
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Although not reported here we also performed the GPH procedure on the first
differences of the Trier series. The estimated parameters of fractional
integration were d = —0.14 («=0.5), d = —0.28 (o= 0.55) and d=-0.40 (v=0.6). The

short memory autoregressive models were of orders 15, 15 and 16 respectively.

A Yule-Walker nonfractional AR model
As the ADF tests revealed that the Trier series is stationary we applied the
Yule-Walker equations to y;. The SIC optimal model is
(1 — 0.34L - 0.28L% — 0.05L° — 0.02L* - 0.09L° - 0.07L°) y, = ¢,
(- 4.94)(- 5.12) (- 0.96) (- 0.34) (- 1.81) (- 1.32)
where the estimated residual variance is 425.78. For the first differences an

AR(15) model was found to be SIC optimal.

An ordinary least squares nonfractional AR model
As no stationarity is required in order to perform ordinary least squares we
we estimated AR models for y,. The SIC optimal model turned out to be

(1 - 0.34L — 0.28L% — 0.05L* — 0.01L* - 0.09L° - 0.07L°) y, = &,

(-11.39)( - 9.03) (- 1.47) (- 0.36) (- 2.92) (- 2.37)

where the estimated residual variance is 422.96. The coefficients very much
resemble those of the Yule-Walker estimated model for vy, The OLS
coefficients are more often significantly different from zero however, at a

five percent significance level.

The choice of an optimal model

From table 4.14 we observe that the fractional models are to be preferred
over the mnonfractional ones. The ADF test rejects integer unit root
stationarity against the fractional unit root alternatives of lower order.
Stationarity is however not that clear as the parameter of integration is

somewhere about 0.5.
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Table 4.14

Square roots of mean squared in—sample prediction errors
for horizons 1, 5, 20, 40, 60 and 120 corresponding to
annual Trier oak tree ring widths

horizons

estimation
type of model method 1 5 20 40 60 120
(models of the levels)
fractional ARMA(2,0.45,0) ML 20.41 23.52 25.90 27.48 27.91 28.67
fractional ARMA(1,0.49,0) ML 21.45 24.99 27.04  27.86  28.02  28.64
fractional ARMA(0,0.44,2) ML 20.72  23.35  25.38  27.33  27.91 28.85
fractional AR(2,0.52) GPH 20.94 24.44 26.80 27.80 28.01 28.64
nonfractional AR(6) YW 20.35 23.92 26.27 27.79 28.01 28.64
nonfractional AR(6) OLS 20.34 23.91 26.22 27.73 27.96 28.59
(models of the first differences)
nonfractional ARMA(2,1) ML 32.00 47.20 49.95 52.41 54.17 58.42
fractional ARMA(3,-0.32,2) ML - - - - - -
fractional ARMA(1,-0.48,0) ML 20.67 24.13 27.07 30.59 32.27 36.99
fractional ARMA(1,-0.29,3) ML 33.21  23.08  26.64 3033 3235  37.23

Cumulative impulse responses

From figure 4.17 we observe that the cumulative impulse responses do not
differ for horizons up to 50. Figure 4.17 shows horizon 120 predictions for
the fractional ARMA(1,0.49,0) model: obviously there is mean reversion.
Finally, figure 4.18 showes the estimated residuals of the latter model, the
autocorrelation coefficients, the periodogram and the partial autocorrelation
coefficients. From the log periodograms plotted below we observe that the one
corresponding to the fractional differences is more evenly distributed over

the frequencies.
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Figure 4.16
Cumulative Impulse Responses - Estimated Models for Levels
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Figure 4.1

7

Horizon 120 predictions of annual Trier oak tree ring widths
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5. CONCLUSIONS

In this thesis the emphasis was on long memory stochastic processes.
Traditional ARIMA models were generalized to allow for zero frequency
fractional integration instead of zero frequency integer integration only.
The fractional parameter describes the long memory behavior of a stochastic
process, thereby modeling low frequency behavior more flexible than when
trying to model this behavior by e.g. an autoregressive filter. The
autoregressive and moving-average components can be applied to describe

short-term behavior.

From the simulation experiments we concluded that the estimator of the
population mean of fractionally integrated series can be seriously biased. In
Geweke and Porter-Hudak (1983) the population mean has been used in the
simulation study on the autocorrelation function of such series. Our
experiments show that computation of this function given empirical mean leads
to underestimation at all autocorrelation lags. One can partially circumvent

this problem by modeling first differences.

Whereas (augmented) Dickey-Fuller tests are mnot developed for fractionally
integrated processes, zero frequency unit root tests based on estimation of
the parameter of fractional integration can be used in case of fracional as
well as integer integrated processes. In the second example Dickey-Fuller

rejects the integer unit root against lower order fractional unit root.

Estimation of the fractional parameter of integration is performed by the
two-stage semi-parametric Geweke and Porter-Hudak (1983) procedure. Although
estimation of this parameter by frequency domain log periodogram regression
is independent from the mean of the series, the influence of short-run ARMA
parameters can lead to serious bias in the estimator. This bias showed up
when analyzing quarterly real US GNP (s.a.). Simultaneous estimation of the
long and short memory parameters according to Sowell (1992a,b) performs

better in this case.

From the frequency domain periodograms it appeared that imposing a
zero-frequency unit root by taking first differences of realizations of some
process can lead to overdifferentiation. With respect to long run forecasting

taking first differences is preferred over the fractional alternatives in
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case of quarterly real US GNP (s.a.). Overdifferentiation is present when
first differences of Trier oak tree ring widths are taken. However, there is
some zero frequency unit root long memory of fractional order. As the
fractional alternatives are preferred, mean reversion under the fractional
alternatives is present and the series is estimated as stationary although

non-stationarity cannot be excluded.

The oak tree data give a very clear illustration of the applicability of time

series modeling in empirical work.
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APPENDIX A

Asymptotic and Covariance Stationarity

Suppose the discrete time series y, can be represented by the following AR(1)

model
Ve = Y t &
for t=1,2,...,T, which after (k—1) substitutions can be written as

k k-1 i
(Al)  y¢ = o4 Vg Zi=0 4 E-iy

6t~NID(0,o§). Furthermore, if we assume that €y=0 the following equation

holds exact, i.e. substitution does not need to be continued:

i

t t-1
(A2) vy = oq Yo + Zi=0 Oy €

It is clear that the mean and the variance respectively of the series y;

depend on the initial observation y0:46

E(ve|vo) = o4.€(%p)
2t 2

1)/(1-0q)

var(yy|ye) = ocft.var(yo) + 02-(1—0‘

k
cov(Ve, Ve-k I Yo) = oq.var(y, l Yo)

where the covariance is derived by making use of (Al).

If ¢t tends to infinity, conditional mean and variance of the process y are
zero and az/ (1-cy) respectively and therefore the process y is called
asymptotically stationary. To arrive at covariance stationarity we
furthermore assume that the initial observation has zero mean and variance

052/(1—0412).47 Then there holds

E(y)=E(y0) =0

var(ye) = var(yy) = 02/(1-od)
2

1)

k 2
cov(YyYe-k) =04 0/(1-a

46
To derive the conditional variance of the series y; the following additional

assumptions are necessary: Yo is independently distributed from the
disturbances {5t}th=1 and |ogl<l. Notice that the necessary condition Joy <1
boils down to assuming that the zero of the polynomial function 1-0yz lies
outside the unit circle.

47
Alternatively we can assume zero mean and zero variance of the initial

observation to arrive at covariance stationarity.
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Notice that from (A2) it can be seen that
2 2t 2, 4 2(t-1), 2
(43)  EGilye) = of'EBR) + (+of+oq +..+oi) of

and so the variance of v, increases out of bound if |oy|>1.

In the appendix A to their paper Dickey, Bell and Miller (1986) note that the
argument above can be extended to higher order models. It can be demonstrated
that for y, following an AR(p) model to be stationary, we need (1) the zeros
of the AR-polynomial o(z) to lie outside the unit circle, (2) the p starting
values yg,Y.1,---,V1-p, 52y, to be independent of the shocks &y,&,,...,€T,
(3) the initial shocks €g,€_j,€_5,... to be zero and (4) the yg,¥.4,..-;¥1-p
to have the correct variances and covariances. Furthermore they note that the
series y, can equivalently be seen to arise from a particular linear

combination of current and past shocks (Wold decomposition):
Yt =Zof=0‘pi5t—i

This can be viewed as generating starting values y;_p,...,yp independent of

€1,E2,---,€r and with the correct covariance structure.
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APPENDIX B

The Levinson-Durbin-Whittle Recursions

The coefficients {a; a2 py---,0pp} ©of the AR(p) model (2.1.7) can be
obtained as a solution to the corresponding Yule-Walker equations (2.1.8) for
k=1,2,...,p, or alternatively to the linear system (2.1.9). In prediction
theory this solution leads to an optimal one step ahead prediction y;;; of
y, in a mean squared error sense, y;;; resulting from equation (2.1.7) by

substitution of this solution.*®

Levinson (1947) and Durbin (1960) independently discovered formulas to solve
the linear system (2.1.8) recursively: the (p+1) Yule-Walker optimal
estimates {@; p41,G2 ps1s--+rOps1,ps1} CAD be derived from the Yule-Walker

optimal estimates {a, p,@s p,...,@p p}. The recursions read

Yy(p'l'l) - E£=1 ak,pr(p—k‘}'l)

Api1,pr1 = 2
[
p
Gg,p+1 = Ok,p — COpi1,p+19p-k+1,p k=1,2,...,p

where

2 2 2 2
Op = Yy(O) _kélak,p'fy(k) = p—l(l_ap,p)
can be interpreted as the variance of the one step ahead prediction error.
The coefficient ap,; 4 is the partial correlation at lag (p+1). The initial
conditions are: a5 =1, aﬁ:‘yy(O) =v.(0) and a1,1=7y(1)/a§. Furthermore, a; ,=0
if k>p and ag,=1 for all p. Notice that the nominator of the right-hand side
of (Bl) and the first expression of 012, in (B3) are Yule-Walker equations
(2.1.8) for k=p+1 and k=0, respectively.49

According to Jonas (1983), Whittle (1963) made the algorithm widely known
among statisticians by showing the correspondence between the autocovariance
matrix of a process and the finite order autoregressive coefficients a;, as
0 =AY %A’ where A and ¥ are defined in equations (2.4.2) and (2.4.3) (see
also Whittle 1983, Sections 3.4 and 7.1). The recursions are therefore often

referred to as the Levinson-Durbin-Whittle recursions.

48
See section 2.1.3, footnote 8.

49
As equation (2.1.9) is a linear system Ax=b where A is a Toeplitz matrix the

Levinson-Durbin-Whittle algorithm can be applied to find a solution x to any
such system.
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For illustrative purposes we present

Levinson-Durbin-Whittle algorithm:

the first three iterations of

Table Bl

The first three Levinson— Durbin—Whittle iterations

the

Iteration

Model

yt=¢¢
Yt=ay,1YVe-1+€¢

Yt=01 2Y¢-1+02 2Y¢-2+€¢

Prediction variance
2
00=7y(0)=7e(0)

2
o1=7y(0)-a7 17y(1)

2
02=7y(0)"a‘1, 27y( 1)"“2, 2'7y( 2)

Iteration

Parameter estimates

2
a1,1=7y(1}/og

az,2=(1y(D)-a1,175(D)/3

ag,0=1
ap,1=1

a1,2=ay,1-62,241,1 ap 2=1
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Table contents:

APPENDIX C

The Geweke and Porter —Hudak (1983) experiment:

N=4000, T=265, u=0, v,(0)=1, indirect Cholesky decomposition of Q:
cpu time = 88.78 seconds
cpu time =89.16 seconds
cpu time=93.87 seconds
cpu time =94.23 seconds

a) d=0.25,
b) d=0.45,
¢) d=0.25,
d) d=0.45,

The Granger and Joyeux (1980) experiment:

N=1000, T=400, u=0, 7,(0)=1, finite order autoregressive polynomial:

Tables on the Simulation Experiments50

a) d=0.25, cpu time=17.50 seconds
b) d=0.45, cpu time=17.37 seconds
¢) d=0.25, cpu time=18.88 seconds
d) d=0.45, cpu time=18.73 seconds
5OAs the variances equal one autocovariances and autocorrelations mean the

same.
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A replication of the Geweke and Porter-Hudak (1983) experiment
autocovariances are computed given the population mean

=0.25 d=0.45

theoretical estimated theoretical estimated

lag autocovar. autocovar. autocovar. autocovar.
0 1.00000000 0.99892257 1.00000000 1.01571072
1 0.33333333 0.33145570 0.81818182 0.83368131
2 0.23809524 0.23662850 0.76539589 0.78096778

3 0.19480519 0.19370126 0.73538037 0.75107941

4 0.16883117 0.16894420 0.71466543 0.73071218

5 0.15105947 0.15007588 0.69895850 0.71474245

6 0.13792386 0.13830638 0.68636465 0.70253296

7 0.12770728 0.12777324 0.67588580 0.69198604

8 0.11946810 0.11807165 0.66693367 0.68270921

9 0.11264135 0.11342874 0.65913328 0.67545295
10 0.10686487 0.10707379 0.65223136 0.66843851
11 0.10189441 0.10133280 0.64604907 0.66207036
12 0.09755848 0.09770913 0.64045557 0.65669971
13 0.09373266 0.09440022 0.63535234 0.65177599
14 0.09032420 0.09023845 0.63066339 0.64682324
15 0.08726236 0.08531729 0.62632894 0.64187663
16 0.08449213 0.08337668 0.62230110 0.63798440
17 0.08196997 0.08053059 0.61854097 0.63413879
18 0.07966096 0.08045070 0.61501652 0.63117719
19 0.07753667 0.07666994 0.61170107 0.62743592
20 0.07557371 0.07493702 0.60857216 0.62430527
21 0.07375266 0.07237761 0.60561074 0.62111890
22 0.07205720 0.07067978 0.60280048 0.61829108
23 0.07047352 0.06881413 0.60012731 0.61551146
24 0.06898987 0.06685963 0.59757900 0.61288206
25 0.06759613 0.06512605 0.59514487 0.61042358
26 0.06628359 0.06415841 0.59281553 0.60829986
27 0.06504464 0.06508817 0.59058271 0.60682958
28 0.06387267 0.06379554 0.58843903 0.60480914
29 0.06276184 0.06256522 0.58637795 0.60279390
30 0.06170702 0.06042041 0.58439359 0.60064071
31 0.06070365 0.05990556 0.58248068 0.59897738
32 0.05974769 0.05963907 0.58063447 0.59749820
33 0.05883551 0.05919701 0.57885064 0.59603137
34 0.05796387 0.05946656 0.57712531 0.59476485
35 0.05712986 0.05800298 0.57545490 0.59304377
36 0.05633084 0.05695970 0.57383618 0.59144132
37 0.05556443 0.05652877 0.57226618 0.59004908
38 0.05482848 0.05532967 0.57074216 0.58845330
39 0.05412102 0.05516929 0.56926164 0.58726893
40 0.05344025 0.05559460 0.56782229 0.58626291
41 0.05278454 0.05521454 0.56642199 0.58512492
42 0.05215239 0.05466122 0.56505876 0.58388129
43 0.05154242 0.05388237 0.56373077 0.58256087
44 0.05095337 0.05292751 0.56243633 0.58122124
45 0.05038405 0.05205151 0.56117385 0.57996346
46 0.04983341 0.05283045 0.55994185 0.57918520
47 0.04930043 0.05325471 0.55873897 0.57835123
48 0.04878420 0.05236838 0.55756391 0.57708737
49 0.04828385 0.05077349 0.55641548 0.57561479
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An alternative to the Geweke and Porter-Hudak (1983) experiment
autocovariances are computed given the sample mean

d=0.25 d=0.45
theoretical estimated theoretical estimated
lag autocovar. autocovar. autocovar. autocovar.
0 1.00000000 0.94604895 1.00000000 0.44985038
1 0.33333333 0.27598257 0.81818182 0.26697599
2 0.23809524 0.18073274 0.76539589 0.21393821
3 0.19480519 0.13758251 0.73538037 0.18381534
4 0.16883117 0.11269060 0.71466543 0.16326978
5 0.15105947 0.09367739 0.69895850 0.14713482
6 0.13792386 0.08178519 0.68636465 0.13472038
7 0.12770728 0.07117068 0.67588580 0.12400657
8 0.11946810 0.06135520 0.66693367 0.11451752
9 0.11264135 0.05666546 0.65913328 0.10716015
10 0.10686487 0.05022890 0.65223136 0.09996686
11 0.10189441 0.04441599 0.64604907 0.09340787
12 0.09755848 0.04074068 0.64045557 0.08785837
13 0.09373266 0.03732841 0.63535234 0.08269932
14 0.09032420 0.03308405 0.63066339 0.07757849
15 0.08726236 0.02808459 0.62632894 0.07250191
16 0.08449213 0.02610286 0.62230110 0.06848359
17 0.08196997 0.02322293 0.61854097 0.06455305
18 0.07966096 0.02313036 0.61501652 0.06147877
19 0.07753667 0.01931147 0.61170107 0.05762145
20 0.07557371 0.01752785 0.60857216 0.05436050
21 0.07375266 0.01493090 0.60561074 0.05107266
22 0.07205720 0.01318040 0.60280048 0.04810657
23 0.07047352 0.01128568 0.60012731 0.04520391
24 0.06898987 0.00926624 0.59757900 0.04238675
25 0.06759613 0.00749712 0.59514487 0.03980632
26 0.06628359 0.00651170 0.59281553 0.03761153
27 0.06504464 0.00739205 0.59058271 0.03599426
28 0.06387267 0.00608603 0.58843903 0.03387924
29 0.06276184 0.00484344 0.58637795 0.03176204
30 0.06170702 0.00264797 0.58439359 0.02950199
31 0.06070365 0.00206742 0.58248068 0.02772400
32 0.05974769 0.00175393 0.58063447 0.02610720
33 0.05883551 0.00125057 0.57885064 0.02449849
34 0.05796387 0.00145320 0.57712531 0.02309721
35 0.05712986 -0.00004609 0.57545490 0.02128191
36 0.05633084 -0.00112508 0.57383618 0.01958590
37 0.05556443 -0.00160231 0.57226618 0.01811179
38 0.05482848 -0.00281043 0.57074216 0.01650421
39 0.05412102 -0.00299914 0.56926164 0.01524086
40 0.05344025 -0.00257302 0.56782229 0.01416867
41 0.05278454 ~0.00300844 0.56642199 0.01289347
42 0.05215239 -0.00359686 0.56505876 0.01159972
43 0.05154242 -0.00437931 0.56373077 0.01023275
44 0.05095337 -0.00537438 0.56243633 0.00881546
45 0.05038405 -0.00628302 0.56117385 0.00748112
46 0.04983341 -0.00553285 0.55994185 0.00661437
47 0.04930043 -0.00512134 0.55873897 0.00569030
48 0.04878420 -0.00602178 0.55756391 0.00436651
49 0.04828385 -0.00762075 0.55641548 0.00284630

122



A replication of the Granger and Joyeux (1980) experiment
autocovariances are computed given the population mean

d=0.25 d=0.45
theoretical estimated theoretical estimated
lag autocovar. autocovar. autocovar. autocovar.
0 1.00000000 1.17911916 1.00000000 3.00811533
1 0.33333333 0.39213423 0.81818182 2.34801506
2 0.23809524 0.28038493 0.76539589 2.15764260
3 0.19480519 0.23123892 0.73538037 2.05116768
4 0.16883117 0.20051089 0.71466543 1.97664643
5 0.15105947 0.17881517 0.69895850 1.91961928
6 0.13792386 0.16434088 0.68636465 1.87505276
7 0.12770728 0.15039411 0.67588580 1.83544523
8 0.11946810 0.13743772 0.66693367 1.80039420
9 0.11264135 0.13062982 0.65913328 1.77374692
10 0.10686487 0.12481034 0.65223136 1.75049581
11 0.10189441 0.12144259 0.64604907 1.73095395
12 0.09755848 0.11619966 0.64045557 1.71129826
13 0.09373266 0.11167732 0.63535234 1.69308868
14 0.09032420 0.10602917 0.63066339 1.67457092
15 0.08726236 0.09910784 0.62632894 1.65607762
16 0.08449213 0.09751168 0.62230110 1.64282028
17 0.08196997 0.09296925 0.61854097 1.62856799
18 0.07966096 0.09352323 0.61501652 1.61905002
19 0.07753667 0.09022827 0.61170107 1.60707843
20 0.07557371 0.08771528 0.60857216 1.59586653
21 0.07375266 0.08402612 0.60561074 1.58428972
22 0.07205720 0.08196621 0.60280048 1.57463807
23 0.07047352 0.08049645 0.60012731 1.56609892
24 0.06898987 0.07981561 0.59757900 1.55851891
25 0.06759613 0.07647006 0.59514487 1.54905454
26 0.06628359 0.07483575 0.59281553 1.54158525
27 0.06504464 0.07825569 0.59058271 1.53861452
28 0.06387267 0.07610061 0.58843903 1.53128790
29 0.06276184 0.07254869 0.58637795 1.52267157
30 0.06170702 0.07158961 0.58439359 1.51636921
31 0.06070365 0.07071606 0.58248068 1.51113580
32 0.05974769 0.07323736 0.58063447 1.50901943
33 0.05883551 0.07408256 0.57885064 1.50553045
34 0.05796387 0.07345045 0.57712531 1.50030213
35 0.05712986 0.06897345 0.57545490 1.49195222
36 0.05633084 0.06674320 0.57383618 1.48569869
37 0.05556443 0.07045022 0.57226618 1.48447526
38 0.05482848 0.06633375 0.57074216 1.47727917
39 0.05412102 0.06680779 0.56926164 1.47364709
40 0.05344025 0.06720905 0.56782229 1.47039267
41 0.05278454 0.06557384 0.56642199 1.46570487
42 0.05215239 0.06699446 0.56505876 1.46338926
43 0.05154242 0.06559026 0.56373077 1.45862519
44 0.05095337 0.06521286 0.56243633 1.45458464
45 0.05038405 0.06365026 0.56117385 1.44946856
46 0.04983341 0.06117426 0.55994185 1.44341943
47 « 0.04930043 0.06020679 0.55873897 1.43894873
48 0.04878420 0.06199947 0.55756391 1.43679953
49 0.04828385 0.06082388 0.55641548 1.43234851
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An alternative to the Granger and Joyeux (1980) experiment
autocovariances are computed given the population mean

d=0.25 d=0.45
theoretical estimated theoretical estimated
lag autocovar. autocovar. autocovar. autocovar.
o 1.00000000 1.13606434 1.00000000 1.81324962
1 0.33333333 0.30110952 0.81818182 1.14983849
2 0.23809524 0.20217451 0.76539589 0.95755264
3 0.19480519 0.15891194 0.73538037 0.84927140
4 0.16883117 0.13171397 0.71466543 0.77317284
5 0.15105947 0.11261497 0.69895850 0.71466018
6 0.13792386 0.09987352 0.68636465 0.66856173
7 0.12770728 0.08742812 0.67588580 0.62761747
8 0.11946810 0.07576923 0.66693367 0.59121949
9 0.11264135 0.06990991 0.65913328 0.56316444
10 0.10686487 0.06480213 0.65223136 0.53869500
11 0.10189441 0.06183652 0.64604907 0.51806409
12 0.09755848 0.05699240 0.64045557 0.49722525
13 0.09373266 0.05300567 0.63535234 0.47789102
14 0.09032420 0.04821774 0.63066339 0.45837148
15 0.08726236 0.04211403 0.62632894 0.43886084
16 0.08449213 0.04058033 0.62230110 0.42441293
17 0.08196997 0.03675255 0.61854097 0.40883924
18 0.07966096 0.03715211 0.61501652 0.39822251
19 . 0.07753667 0.03425397 0.61170107 0.38514230
20 0.07557371 0.03215145 0.60857216 0.37275959
21 0.07375266 0.02899242 0.60561074 0.35992361
22 0.07205720 0.02709729 0.60280048 0.34899236
23 0.07047352 0.02573541 0.60012731 0.33918139
24 0.06898987 0.02511706 0.59757900 0.33049533
25 0.06759613 0.02238412 0.59514487 0.32008446
26 0.06628359 0.02107271 0.59281553 0.31165390
27 0.06504464 0.02378724 0.59058271 0.30771938
28 0.06387267 0.02174860 0.58843903 0.29942685
29 0.06276184 0.01882282 0.58637795 0.28977140
30 0.06170702 0.01817588 0.58439359 0.28279290
31 0.06070365 0.01747374 0.58248068 0.27658372
32 0.05974769 0.01933196 0.58063447 0.27354791
33 0.05883551 0.01970032 0.57885064 0.26930958
34 0.05796387 0.01912326 0.57712531 0.26321116
35 0.05712986 0.01539504 0.57545490 0.25391418
36 0.05633084 0.01350941 0.57383618 0.24665616
37 0.05556443 0.01648800 0.57226618 0.24451767
38 0.05482848 0.01311061 0.57074216 0.23632258
39 0.05412102 0.01343742 0.56926164 0.23187373
40 0.05344025 0.01375375 0.56782229 0.22776013
41 0.05278454 0.01231234 0.56642199 0.22217041
42 0.05215239 0.01351158 0.56505876 0.21898340
43 0.05154242 0.01216806 0.56373077 0.21353331
44 0.05095337 0.01176210 0.56243633 0.20877590
45 0.05038405 0.01070373 0.56117385 0.20272393
46 0.04983341 0.00894330 0.55994185 0.19569927
47 0.04930043 0.00807930 0.55873897 0.19047764
48 0.04878420 0.00936004 0.55756391 0.18761257
49 0.04828385 0.00843962 0.55641548 0.18250847
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APPENDIX D
More on ADF Unit Root Testing

In Section 2.2.2 Dickey-Fuller zero frequency unit root tests are presented

which are useful if the processes under consideration have zero mean. If a
process has a non-zero mean, a natural way to model this under the

alternative hypothesis is:

(Dla)  Hy: (ye—p) = ¢.(Ve1—H) + & o#1,

which is equivalent to

(D1b) Hyi:yy = o + ¢y + &

where o= u(1-¢) and yy=0. Alternatively, given a process with a non-zero mean
and _deterministic _trend component the alternative hypothesis is

(D2a)  Hy: (ye—p=7t) = ¢ (Vea—p-7-(t-1)) + &, &+l

which is equivalent to

(D2b)  Hy: yy = o + Bt + Gy + &

where o= p(1-¢)+y¢ and g =7y(1-9).

Limiting and finite-sample distributions of p and T

As mean p and trend component yt are usually unknown in practice unit root
tests are wusually based on the models (D1b) and (D2b). Fuller (1976)
tabulated the finite-sample and asymptotic critical values under the null
hypotheses (o, ¢)=(0,1) for model (D1b) and (c,B,¢)=(0,0,1) for model (D2b)

based on Monte Carlo studies. Thus, for the latter model trending behavior

under the null is excluded. The estimators of ¢ and corresponding
t-statistics are denoted by #, and 7, for model (D1b) respectively, and by &,
and 7, for model (D2b) respectively (a.o. Fuller (1976)). The subscript u
reflects the inclusion of a constant, whereas the subscript 7 reflects the

presence of a trend (and a constant).

Dickey and Fuller (1979) derived the analytical expression of the limit dis-
tributions of @, and 7, under the assumption (o, ¢)=(0,1), and of @, and T,
under the assumption (3,¢)=(0,1). It should be noted that the limit distribu-

tions of @, and 7, are unaffected by the value of o in model (D2b). However,

the finite-sample distributions do depend on . This is the reason why o« has

been put to a specific value (i.e. zero) in Monte Carlo studies.
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For model (D2a) a similar result holds under the null hypothesis, as it then
reads y;=yy+7+¢€; for any pu. As, given stationarity, p represents the mean
of the series we say that the mean is not identified under the null. In
finite sampling g can only be related to the initial conditions under the
null (Said and Dickey (1985)).

Given the dependence of the limit distributions of &, and 7, on «, and the
dependence of the limit distributions of @, and 7, on B, an F-test as
advocated in Dickey and Fuller (1981) seems to be more appropriate than tests

based on ¢ solely. However, F-tests have limited use (Ooms 1993, p. 57);

In zero frequency unit root testing linear trending behavior under the null
is excluded for model (D1b) and quadratic trending behavior under the null is
excluded for model (D2b). However, if we allow for such behavior Dickey and
Fuller (1979) find that the limiting distributions of ?ﬂ in the presence of a
linear trend and 7, in the presence of a quadratic trend are normal. So, if
(D1b) is the maintained model the null hypothesis will be accepted more often

than the nominal level.

Limiting and finite-sample distributions of o and B

In Dickey and Fuller (1981) limiting distributions are also derived for the
estimator of « in model (D1b) and the estimators of o and B in model (D2b),
together with those of their respective ¢-statistics. The asymptotic
distributions are symmetric and independent of the initial condition yj.
Furthermore, the ¢, should form a sequence of independent identically
distributed random variables, not necessarily normal. For model (D1b) the
statistics are denoted by 64,, and ?au; for the model (D2b) the statistics are
denoted by &, B,, Tor and Tg,. Percentage points for the limiting distribu-

tions are tabulated.

Dickey and Fuller (1981) also tabulated finite sample critical values for
these statistics drawn from Monte Carlo studies. The asymptotic distributions
continue to hold for higher order autoregressive processes as well (see also
Diebold and Nerlove (1990)).

Testing under joint hypotheses

Dickey and Fuller (1981) derive a likelihood ratio (LR) test of the
hypothesis («,¢)=(0,1) for model (2b), of the hypothesis (c,f3,¢)=(0,0,1) for
model (3b) and of the hypothesis (o, 8,¢)=(c,0,1) for model (3b). Furthermore,
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they derive the limiting distributions of these test statistics. The limiting
distributions for the latter two hypotheses are monotone transformations of
common regression ’F-tests’ one would construct. The latter limiting

distribution is independent of o

Evans and Savin (1981) show that the powers of the LM tests are conditional
on the value of the parameter c/o, just as the finite sample distribution of
the normalized least squares estimator. However, the asymptotic distribution
of this statistic depends on c/o for values of ¢ greater than one in absolute

value only.
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